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Abstract

Oliveira, Anderson José Silva de; Garcia, Alessandro Fabricio (Ad-
visor). On the Prioritization of Design-Relevant Smells. Rio
de Janeiro, 2019. 87p. Dissertação de mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.
Software systems are likely to face what is called design problems.

A design problem is the result of bad decisions that can a�ect some im-
portant quality attributes of the software system such as maintainability,
performance and the like. Given the typical lack of design documentation,
developers have to rely on implementation-level symptoms to identify and
remove design problems. An implementation-level symptom usually mani-
fests as a code smell, a micro-structure in the program possibly indicating
the presence of (or part of) a design problem. Large programs have hundreds
or thousands of program elements (packages, classes, interfaces, and the
like) in which a significant proportion is a�ected by smells. However, many
of these smells may bear no relationship with design problems, i.e. they
are not design-relevant smells. Then, it becomes hard and time-consuming
to prioritize smelly program elements being suspects of having a design
problem. Unfortunately, the literature fails to provide developers with heu-
ristics to support the prioritization of these suspicious program elements.
In this context, this dissertation reports two studies aimed at assisting in
the elaboration of such prioritization heuristics. The goal of these heuristics
is to locate a short (high priority) list of smelly program elements, which
are suspects of having design-relevant smells. Our first study consists of a
qualitative analysis on recurring criteria used by developers, in practice, to
prioritize elements suspicious of having design problems. Based on these cri-
teria, we derived a preliminary suite of prioritization heuristics. Our second
study focused on the evaluation of the proposed heuristics. As a result, we
found that two out of nine heuristics reached the best results in precision.
The best heuristics are based on two criteria: smell diversity and smell gra-
nularity. Our findings suggest that we were able to derive a first promising
approach to support developers in prioritizing elements with design-relevant
smells.

Keywords
Design Problems; Prioritization; Code Smells.
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Resumo

Oliveira, Anderson José Silva de; Garcia, Alessandro Fabricio. Pri-
orização de Anomalias de Código Relevantes ao Projeto
dos Sistemas de Software. Rio de Janeiro, 2019. 87p. Disserta-
ção de Mestrado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.
Sistemas de software provavelmente enfrentarão os chamados proble-

mas de projeto. Um problema de projeto é o resultado de más decisões
que podem afetar alguns atributos de qualidade importantes do sistema
de software, como manutenção, desempenho e afins. Dada a típica falta
de documentação do projeto, os desenvolvedores precisam confiar em sin-
tomas que aparecem a nível de implementação para identificar e remover
problemas de projeto. Um sintoma a nível de implementação geralmente
se manifesta como uma anomalia de código, que se trata de uma microes-
trutura no programa possivelmente indicando a presença de (ou parte de)
um problema de projeto. Grandes programas possuem centenas ou milhares
de elementos (pacotes, classes, interfaces e afins) nos quais uma proporção
significativa é afetada por anomalias. No entanto, muitas dessas anomalias
não possuem relação com problemas de projeto, em outras palavras, elas
não são anomalias relevantes ao problema de projeto. Desse modo, torna-se
difícil e demorado priorizar os elementos anômalos do programa que são sus-
peitos de terem problema de projeto. Infelizmente, a literatura não fornece
aos desenvolvedores heurísticas que auxiliem a priorização destes elementos
de projeto suspeitos. Neste contexto, esta dissertação reporta dois estudos
que objetivam auxiliar na elaboração de tais heurísticas, visando auxiliar o
desenvolvedor nas decisões de priorização. O objetivo destas heurísticas é
localizar uma pequena lista de elementos suspeitos de terem anomalias de
código relevantes ao problema de projeto. Nosso primeiro estudo consiste em
uma análise qualitativa para determinar os critérios utilizados pelos desen-
volvedores para a priorização de elementos suspeitos de terem problemas
de projeto. Com base nesses critérios, derivamos um conjunto preliminar
de heurísticas de priorização. Nosso segundo estudo centrou-se na avaliação
destas heurísticas. Como resultado, descobrimos que duas das nove heurísti-
cas alcançaram os melhores resultados de precisão. As melhores heurísticas
são baseadas em dois critérios: diversidade de anomalias e granularidade das
anomalias. Nossas descobertas sugerem que fomos capazes de obter uma pri-
meira abordagem promissora para apoiar os desenvolvedores na priorização
de elementos com anomalias de código relevantes ao projeto de software.
Palavras-chave

Problemas de Design; Priorização; Anomalias de Código.
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1
Introduction

Software design is the result of a series of decisions made during the
software development process (Tang et al. 2016). These decisions can come
in many ways, from o�cial meetings with developers to daily discussions
during the software development (Baker, Hoek and Petre 2012). Even a sin-
gle design decision may impact a significant part of the system. There-
fore, design decisions are fundamental in the software development process
(Gamma et al. 1995). In particular, they are fundamental to define how the
software will be organized into components and how they will communicate
with each other. Combined, the design decisions will drive how the system will
be developed and maintained in the future. Indeed, modifications in the de-
sign are prone to occur frequently since developers cannot fully predict future
changes, such as the changes in the system’s requirements and changes in the
technologies.

These unpredictable modifications also happen due to inappropriate de-
sign decisions that are made along with software development. These inappro-
priate decisions are called design problems when they a�ect negatively quality
attributes of the software system such as maintainability and performance
(Garcia et al. 2009b). As design problems are the result of inappropriate de-
sign decisions, they can a�ect a large part of the software system. The most
critical design problems are often those a�ecting how the system is modu-
larly organized in subsystems and components, and how they interact with
each other. Thus, in this dissertation, we focused on design problems that
can be identified through the analysis of code elements a�ected by inappro-
priate design decisions related to the system modularity. These decisions may
be related to, for instance, how the system is decomposed into components,
and how they communicate with each other. We are interested in these de-
sign problems since they have been associated with major maintenance e�ort
(Schach et al. 2002, Garcia et al. 2009, Yamashita and Moonen 2012).

An example of design problem occurs when multiple components are re-
sponsible for realizing the same high-level functionality, i.e., the realization
of the same functionality is scattered over multiple components instead of
being modularized in a single one. This type of design problem is named Scat-
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Chapter 1. Introduction 12

tered Concern (Garcia et al. 2013). Many design problems, like this one, are
particularly harmful as they crosscut components of the system, thereby ham-
pering multiple quality requirements, such as maintainability, understandabil-
ity, and robustness. Other examples of design problems are Cyclic Dependency
(Parnas 1978), Fat Interface (Martin and Martin 2006) and Concern Overload
(Macia et al. 2012).

Once identified, design problems need to be removed from the soft-
ware system. Software refactoring is the basic means to remove design prob-
lems (Paixao et al. 2017, Lin et al. 2016). Refactoring consists of one or more
program transformations used to improve the structural quality (Fowler 1999).
Before refactoring, developers have to prioritize elements that are likely to
contain design problems. For this purpose, they can search for elements that
manifest symptoms (Sousa et al. 2017) of design problems in the system. A
symptom is a partial sign of a design problem that manifests in the source
code. Given the typical lack of documentation (Kaminski 2007), developers
have to rely on implementation-level symptoms to identify and remove design
problems (Sousa et al. 2017). An implementation-level symptom usually man-
ifests as a code smell (Fowler 1999), a microstructure in the program possibly
indicating the presence of (or part of) a design problem.

Unfortunately, many code smells may not help the developer to identify
a design problem (Macia et al. 2012a, Macia et al. 2012b, Macia et al. 2012,
Oizumi et al. 2016). The reason is that these smells may be wrong suspects.
Thus, only some code smells can be used by the developers to identify design
problems, which we call them design-relevant smells. Before the identification
of a design problem, the developer has to prioritize the relevant smelly
elements. A relevant smelly element (or relevant element, for short) is one
that is a�ected by at least one design-relevant smell. Unavoidably, developers
will have to prioritize relevant elements in the software system, since there are
many elements in the system that are not related to design problems.

The prioritization of program elements to find the relevant ones is a
challenging task. Among the challenges, there is the fact that large software
systems may have hundreds or even thousands of program elements – packages,
classes, interfaces, and the like. Then, it becomes hard and time-consuming to
prioritize elements being suspects of having a design problem. In addition to
this challenge, not all smelly elements contain design-relevant smells. Thus,
developers still have to analyze these elements to decide if the smells indicate
a design problem or not. Finally, developers often face time constraints, which
may force them to reduce the space of search for design-relevant smells to only
a few elements in the system.
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Chapter 1. Introduction 13

1.1
Motivation and Problem Statement

In addition to the large size of the software systems, the de-
sign problems can a�ect elements that are scattered in di�erent com-
ponents (i.e., classes and packages). This scenario forces the developer
to focus on critical design problems of the system. A critical design
problem is one that developers end up trying to remove from their
systems through refactoring (Godfrey and Lee 2000, Gurp and Bosch 2002,
MacCormack, Rusnak and Baldwin 2006, Schach et al. 2002). Refactoring is
a program operation used for the improvement of the code structure of
the system (Fowler 1999). Thus, developers have to prioritize program ele-
ments that may contain a design problem. For that matter, they can use the
implementation-level symptoms of design problems (Sousa et al. 2017), as pre-
viously discussed.

Even though a design problem may be associated with more than one
type of symptom, we will focus only on code smells in this dissertation. We
chose code smells as they can also signal other symptoms. For instance, let
us consider the symptom which represents poor structural quality attributes,
such as coupling. We can recognize that a class has high coupling using the
code smell Intensive Coupling. This smell can also signal other symptoms,
including the violation of the low coupling and information hiding principles,
as well as poor testability and maintainability. Additionally, code smells are
one of the most investigated symptoms in the literature (Macia et al. 2012a,
Macia et al. 2012b, Moha et al. 2010, Oizumi et al. 2016, Oizumi et al. 2017,
Sousa et al. 2018, Palomba et al. 2014, Yamashita and Moonen 2013). Thus,
from now on, when we cite symptoms, we are referring to code smells.

The prioritization of program elements that may contain a design prob-
lem is not trivial. There are many reasons that make this prioritization, based
on code smells, di�cult. As previously mentioned, not all code smells are re-
lated to a design problem. Thus, the developer may find himself analyzing el-
ements with smells that are not relevant to identify a specific design problem.
For instance, when a code smell is introduced in the source code due to the use
of APIs or frameworks, it does not necessarily indicate the presence of design
problems. Given this context, finding the relevant elements to the identification
of design problems is cumbersome. Large systems tend to have multiple design
problems spread over multiple elements. In addition, as design documentation
is often unavailable or outdated (Trifu and Reupke 2007, Kaminski 2007), de-
velopers have to analyze the source code of these elements to find the design-
relevant smells.
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Figure 1.1: Design Problems A�ecting the DeviceRepository and APP classes

To illustrate how complex it is to locate relevant elements, let us consider
a system, called S1. This system, shown in Figure 1.1, manages loans and sales
of printer devices. After three years of its deployment, developers noticed a
high e�ort to maintain and evolve S1. A reason was the presence of design
problems. Even though developers knew about these problems, they mentioned
the di�culty to identify them, especially because they did not know which
elements and smells they would have to focus their e�ort. In this example,
the developer could be able to identify the design problem if he knew what
elements and smells he should prioritize. However, this scenario is far from
being the typical one that developers face (Sousa et al. 2017).

In most cases, developers do not know in which part of the program they
should start the analysis, neither what smells, among the thousands, they
should focus on. Given the influence of design problems, code smells appeared
in di�erent elements in S1, such as the APP and DeviceRepository classes.
Figure 1.1 details the DeviceRepository class and presents the smell a�ecting
the APP class. These smelly elements can be the ones that developers can
analyze first to find relevant elements to the identification of design problems.

Let us consider the DeviceRepository class, which has several di�erent
types of smells. Several of them – the design-relevant ones – indicate that
there is something wrong with the class implementation. They are presented
in Figure 1.1. We discuss some of them here. For instance, the God Class smell
indicates that the class may be implementing more than one functionality,
which makes the class and its methods to become complex and large –
represented by the Complex Class and Long Method smells. Feature Envy is
another evidence that the class may be implementing another functionality
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Chapter 1. Introduction 15

since there is a method that is more interested in other classes than its
own. Consequently, other methods intensively access other classes, which is
a symptom represented by the Dispersed Coupling smell.

As a consequence, the DeviceRepository class should be prioritized by
the developers. This class is being a�ected by various design-relevant smells,
which indicate the occurrence of a design problem known as Concern Overload
(Li et al. 2014). This problem occurs when an element fulfills many non-
cohesive functionalities. Indeed, this is what happens with DeviceRepository,
which mistakenly implements both persistence and business functionalities. In
this example, we can observe that the developer would prioritize this smelly
class, for instance, by relying on the fact that it is being a�ected by many
smells.

Now let us consider the APP class, which also contains the code smell
Complex Class. At first sight, a developer can think that this class is a
relevant element, due to its high complexity. However, in a deeper analysis,
a developer will notice that the class does not have design problems. First,
its complexity is due to the framework used in the implementation. Second,
the framework makes the class handle multiple functionalities, which gives the
wrong impression of the presence of a design problem. In summary, the element
should not have been prioritized by the developer. This scenario illustrated by
the APP class is one where the developer wasted time analyzing an element that
is not relevant to the identification of design problems.

Analyzing smells that are not related to a design problem can be time-
consuming and can mislead developers to identify a design problem that does
not exist. Unfortunately, APP is just one of the many elements on the system
that is not related to design problems. Indeed, a system may contain several
elements unrelated to any design problem. For example, let us consider the
Apache OODT system (Mattmann et al 2006). This project deals with the
development, management, and storage of scientific data. It has a total of 1473
classes and interfaces, from which 290 are relevant elements (19.68%) according
to its original developers. Consequently, due to time constraints and a large
number of elements, developers have to prioritize only a few relevant elements
that are likely to have design problems. In other words, developers need
heuristics that support this prioritization. Therefore, our problem statement
is summarized as follows.

Developers need to prioritize a short list of smelly program elements,
which are suspects of having design-relevant smells.
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1.2
State of the Art and its Limitations

In this dissertation, we aim at investigating how to support developers
on the prioritization of relevant elements (Section 1.3). Some previous studies
investigated how to provide, to a certain extent, support of this nature to
developers. This section presents the state of the art and limitations of existing
studies. With an understanding of these studies and their limitations, we aim
at extending the state of the art by better supporting the developers on the
prioritization of relevant elements. We classify and characterize our related
work in two categories: identification and prioritization of design problems.

Identification of Design Problems. Diverse studies investigated the use
of code smells to identify design problems. For instance, Macia et al.
(Macia et al. 2012b) studied the relevance of code smells to identify design
problems. They investigated to what extent smells, detected through auto-
matic detection strategies, were related to some types of design problems.
They identified that many of the code smells detected automatically were not
strong indicators of design problems.

Moha et al. (Moha et al. 2010) proposed a method, implemented as a
tool called DECOR, that describes the steps on the identification of code
smells and design problems. This method, however, depends on a domain-
specific language to specify the detection of code smells and design problems
(Moha, Gueheneuc and Leduc 2006). Li et al. (Li et al. 2014), in their study,
investigated if some modularity metrics indicate design problems. They con-
ducted a multiple case study with thirteen companies. They were able to iden-
tify two metrics that can be used to identify design problems namely index
of package changing impact (IPCI) and index of package goal focus (IPGF).
However, they did not investigate if developers eventually use these metrics in
practice. Moreover, their work does not explicitly cover the prioritization of
relevant smelly elements.

Oizumi et al. (Oizumi et al. 2016) investigated to what extent groups
of inter-related code smells, named agglomerations, could help developers to
identify design problems. They found that some types of agglomerations are
strong indicators of design problems. However, they also did not conduct an
investigation with developers. In this sense, Sousa et al. investigated how
software developers identify design problems in practice (Sousa et al. 2018).
They discovered that developers tend to combine multiple symptoms to
identify design problems. The authors did not focus on providing an approach
to help developers to prioritize design problems. In fact, the existing studies
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fell short either in investigating how developers prioritize relevant elements or
in proposing support for the prioritization of these elements. In addition, they
do not propose any heuristics that could somehow support the developer on
the prioritization task.

Prioritization of Design Problems. When it comes to prioritization, there
are studies focused on the use of smells to prioritize elements that have design
problems (Arcoverde et al. 2013, Vidal et al. 2016, Guimaraes et al 2018). For
example, Vidal et al. (Vidal et al. 2016) proposed and evaluated a set of
criteria to prioritize classes based on code smells. These proposed criteria based
on implementation and architectural information of the system, which includes
the version history of the system. However, their heuristics did not achieve a
homogeneous result among all projects – they did not perform well in some
projects. Arcoverde et al. (Arcoverde et al. 2013) presented and evaluated
four heuristics for prioritizing design-relevant smells. These heuristics explore
characteristics of the software system such as the density in which an element
changes and the error density of an element. Considering the average precision
of all projects evaluated, they reached a maximum of 72.5%, with four projects.

The work of Guimaraes et al.(Guimaraes et al 2018) is also focused on
prioritizing critical code smells for the identification of design problems. In their
study, they evaluate how developers use blueprints and source code to identify
design-relevant smells. The main limitation of the approach of Guimaraes et
al. is the dependence on design blueprints since design information is often
outdated or unavailable for many systems. Even though they propose heuristics
for the prioritization of design-relevant smells, these studies did not follow
a practice-based approach to defining their heuristics. Their approach di�ers
from ours as we had followed a well-defined methodology to observe developers
o practice along with the task of prioritizing smelly elements. In addition, most
of these approaches rely on software information that is usually not available,
such as design blueprints.

1.3
Goal and Research Questions

Given the motivational example (Section 1.1), we observe that developers
need support on the prioritization of relevant smelly elements. These priori-
tized smelly elements can be used afterwards for the identification of design
problems. Most of these existing approaches (Section 1.2) do not take into
account the task of prioritizing program elements, which is a task that devel-
opers have to perform before the identification of design problems. Given this
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existing limitation, the goal of this dissertation is to support developers along
with the prioritization of relevant elements. This prioritization also allows de-
termining design-relevant smells: when a relevant element is prioritized, it has
at least one design-relevant smell. Conversely, when an element is discarded
during the prioritization, its code smells are also discarded. These discarded
smells are, then, not considered relevant to the design.

To achieve this goal, we investigated the criteria that developers tend to
use during the prioritization task. We assume that the observation of develop-
ers performing this task will provide us with insights on e�ective prioritization
criteria. Based on these criteria, we proposed a suite of prioritization heuris-
tics. These heuristics are intended to support developers on the prioritization
of relevant elements. Starting from these elements, the developer will be able
to analyze their code smells, which can be relevant to identify one or more
design problems. Therefore, we can summarize our research in terms of the
following general research question:

General Research Question: How to support the developers on
the prioritization of relevant smelly elements?

To better address this research question, we divided it into the following
specific research questions:

SRQ1.: What are the criteria that developers tend to use to prior-
itize relevant smelly elements?

To gather the data necessary for answering SRQ1, we conducted a study
on the prioritization of relevant elements (Chapter 3). We divided this study
into two parts. In the first part, we asked the developers to prioritize elements
relevant to the identification of design problems in their source code. We are
interested to find out criteria that they apply during the prioritization. Their
prioritization criteria may rely on intrinsic information of the symptoms. For
the sake of illustration, let us consider the code smells. The type of each
smell is an example of intrinsic information. However, the information that
a developer would have to consider when prioritizing an element may go
beyond the type of the code smell. He may also consider the size of the source
code directly a�ected by the code smell, which is also intrinsic information.
For example, Long Method is a smell that usually comprehends too many
lines of code, as compared to a Message Chain smell, which a�ects only one
statement (Fowler 1999).
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Observing how developers prioritize elements will allow us to find these
criteria, thus answering SRQ1. To answer this question, we highlight that we
asked the developers to perform the prioritization until they identify a design
problem. By asking them to conduct the prioritization until the identification of
a design problem, we could assure that they would eventually perform actions
that are useful for e�ective prioritization of relevant elements.

In the second part, through qualitative analysis, we identified: (i) five
criteria that developers use to prioritize program elements as suspects of
being a�ected by design problems; and (ii) two criteria that developers more
frequently use to prioritize relevant elements. One criterion considers the
number of smells, while the other considers the diversity of smells located in
a suspicious element. Based on these criteria, we derived a suite of heuristics
to prioritize relevant elements. An example of proposed heuristic is what we
called the Smell Count heuristic, which prioritizes elements with the highest
number of smells.

We expect that the developers can benefit from the proposed heuristics,
potentially saving time and e�ort that is dedicated to such prioritization task.
The example in Section 1.1 illustrates a scenario where the developer can
benefit from these heuristics. For instance, let us consider the use of the Smell
Count heuristic. The application of this heuristic on the system S1, from the
example, would lead to the prioritization of the DeviceRepository class over the
other classes since it has the highest number of smells in the system – seven
code smells in total. In addition, the heuristic would discard the APP class,
since it has only one code smell. Thus, developers would not spend e�ort on
inspecting APP class in the search for design-relevant smells, which would not
lead to the identification of a design problem.

Once the heuristics were proposed, the next step consisted of evaluating
them. We evaluated our heuristics regarding their e�ectiveness in finding
relevant smelly elements in a top priority list of N elements (TOPN). The
e�ectiveness of the heuristics was assessed in terms of their precision. It is
important to highlight that it is expected that not necessarily all the heuristics
will be e�ective. In other words, not all the prioritization criteria, which are
employed by developers, are necessarily e�ective to determine relevant smelly
elements. Therefore, we defined the following research question:

SRQ2.: What is the precision of the prioritization heuristics?

To answer SRQ2, we conducted two evaluations (Chapter 4). We decided
to perform two evaluations in order to observe how the heuristics would
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perform in two di�erent scenarios. First, we evaluated our heuristics with
software systems found in the GitHub repository. Second, we evaluated the
heuristics with software systems provided by our industry partners. The
evaluations di�er in two points: (i) the set of systems used in the evaluation,
and (ii) how we created the list of elements prioritized by developers.

As a result, we found that two out of nine heuristics reached the
best precision results. These two heuristics are named Diversity and Smell
Granularity. These heuristics had a better precision probably because they
consider the type of each smell a�ecting an element. In fact, the Smell Count
heuristic, which is agnostic to the smell type and prioritizes elements with
the highest amount of smell instances, fell short in prioritizing elements with
design problems. However, the Smell Count heuristic was able to prioritize
elements that developers should focus their e�ort on refactoring them. Based
on our results, we concluded that heuristics that consider intrinsic information
of a smell, such as the type of smell, are likely to help developers to prioritize
elements.

By answering our two specific research questions, we were able to provide
developers with promising heuristics to prioritize relevant elements. When a
developer prioritizes a relevant element, he is automatically prioritizing its
design-relevant smells. In this way, when we present the prioritized relevant
elements, we also avoid showing code smells that are not relevant to the
identification of a specific design problem. The prioritization can save time
that would be otherwise spent in (i) manually locating the priority elements,
and (ii) manually inspecting irrelevant or worthless information from these
elements unrelated to a design problem.

1.4
Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2
describes the basic concepts that will be used during the dissertation. Chap-
ter 2 also outlines the related works and the current state of the art on the
context of this dissertation. Chapter 3 present the study where we collected
the criteria used by developers on the prioritization of smelly elements. Chap-
ter 4 presents the evaluation of our proposed prioritization heuristics, created
based on the criteria found in the previous study, with two sets of systems.
Chapter 5 presents the final remarks of this dissertation, with our main con-
tributions and the future works.
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2
Background and Related Work

This chapter provides the background and related work of this disser-
tation. Section 2.1 introduces the concepts associated with software design
and design problems. Section 2.2 presents a discussion on the prioritization
of relevant smelly elements, i.e., those containing one or more design-relevant
smells. Section 2.3 discusses the related work in terms of: (i) the relationship
between design problems and code smells, (ii) identification of design problems
with various types of symptoms, and (iii) the prioritization of relevant smelly
elements. Section 2.4 summarizes this chapter.

2.1
Software Design and Design Problem

Software design can be defined as the result of a series of decisions made
during the software development process (Tang et al. 2016). A design decision
can be defined as a description of the choice and considered alternatives that
(partially) realize one or more requirements (van der Ven et al. 2006). These
decisions will help any given software system in achieving quality requirements,
such as maintainability and reusability. The software design can be divided
into two main stages: (i) early software design, which focuses on organizing
the software system into components, interfaces and how they communicate
with each other; and (ii) detailed design, where more specific decisions are
taken for each component previously defined (Booch 2004).

Ideally, design decisions should be taken before the implementation
stage of the software system. However, this is not what happens in prac-
tice since, during the evolution of the software system, some decisions
need to be reconsidered or even left aside (Baker, Hoek and Petre 2012).
These unexpected changes happen due to what we call design problems.
A design problem happens when one or more design decisions negatively
impact the quality attributes of a software system (Garcia et al. 2009b).
The occurrence of design problems can also cause issues such as ex-
pensive costs for maintainability in the future, the re-design of the
system or even its discontinuity (MacCormack, Rusnak and Baldwin 2006,
Godfrey and Lee 2000, Schach et al. 2002, Gurp and Bosch 2002). In addi-
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tion, design problems can a�ect critical locations of a system, such as the
core elements (Bass, Clements and Kazman 2003) that implement the main
software functionalities.

Fat Interface is an example of a design problem. This design prob-
lem occurs when a developer aggregate too many responsibilities in a
single interface, turning the interface highly coupled with other modules
(Martin and Martin 2006). A Fat Interface usually emerges from inappropriate
decisions related to abstraction and separation of concerns. A concern com-
prises anything that the stakeholders of a software project may want to con-
sider as a conceptual unit (Robillard and Murphy 2007). Thus, the violation
of the Separation of Concern Principle occurs when the stakeholders decom-
pose the system concerns into dependents parts that should be independent
(Parnas 1972, Dijkstra 1997). When neglected, a Fat Interface may cause a
high e�ort on the maintenance of software systems (Macia et al. 2012b). This
happens since, for each change on the interface, the developer has to change
multiple classes that are using or implementing the interface. These classes
are a�ected by the changes because they are coupled with the interface, even
though they do not necessarily have a conceptual relation to the changes per-
formed on the interface.

Other examples of design problems are Scattered Concern
(Garcia et al. 2009b), Ambiguous Interface (Garcia et al. 2009b), and
Cyclic Dependency (Martin and Martin 2006). As mentioned in Chap-
ter 1, in the context of this dissertation, we decided to focus on design
problems related to violations of modularity principles, such as sepa-
ration of concerns and abstraction. We focused on these design prob-
lems because they have been associated with major maintenance e�ort
(Schach et al. 2002, Garcia et al. 2009, Yamashita and Moonen 2012). They
may hamper the introduction of new features, cause major re-engineering or
even lead to the discontinuation of a system. In fact, a recent study showed
that many changes are either rejected or reverted in software projects due
to these design problems (Oliveira, Valente and Terra 2016). Another reason
to focus on these design problems is because they occur frequently in the
software systems, according to the managers of these systems, studied in the
context of this dissertation (Chapter 3 and Chapter 4). In addition, Table 2.1
presents the details of all design problems covered in this dissertation. We
focused on this catalog since those design problems cover multiple violations of
modularity, such as abstraction and separation of concerns. The first column
presents the design problem and the second column presents its description.

The identification and removal of design problems of the software system
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Table 2.1: Design Problems Description
Design Problem Description

Ambiguous Interface It refers to interfaces representing
the abstraction that does not reveal which services it o�ers.

Cyclic Dependency Two or more components that directly or indirectly depend on each other
Component Overload Component responsible for realizing two or more unrelated concerns
Concern Overload Abstraction that fulfills too many concerns
Fat Interface Interface with multiple non-cohesive services

Incomplete Abstraction An element that does not support a responsibility completely in their enclosing
component

Misplaced Concern An element that implements a concern, which is not the predominant
one of their enclosing component

Scattered Concern Multiple components responsible for realizing a crosscutting concern
Unused Abstraction Abstraction that is never used by other components
Unwanted Dependency Dependency that violates an intended design rule

present some challenges, mainly due to the time constraints and the e�ort to
perform these tasks. Given the challenges, developers often have to focus on
a few critical design problems. We consider a critical design problem as one
where the developer has to dedicate some e�ort in refactoring to remove it.

Some design problems can be scattered through multiple elements of the
system (e.g. Scattered Concern, Fat Interface, Component Overload). Hence,
developers have to prioritize elements that are likely to have critical design
problems. In addition, as design documentation is often unavailable or out-
dated (Trifu and Reupke 2007, Kaminski 2007), developers have to analyze the
source code of these elements to find indicators of design problems. These indi-
cators, named symptoms (Sousa et al. 2017), are partial signs of the presence
of a design problem. Developers can rely on code smells, in which are the most
used and investigated symptom (Yamashita and Moonen 2013, Macia 2013,
Macia et al. 2012b, Moha et al. 2010, Oizumi et al. 2016, Vidal et al. 2016).

2.2
Prioritizing Design Problems with Design-Relevant Smells

In this section, we explain about the code smells (Section 2.2.1) and
their role in the prioritization of design problems (Section 2.2.2). Then, we
present an example of how they can be used during the prioritization task
(Section 2.2.3).

2.2.1
Code Smells

A code smell is a micro-structure on the source code that can serve as an
indicator of a design problem (Fowler 1999). The code smells can be divided
in terms of its scope on the system. The first group (or level) of code smells,
consist of method-level smells (e.g., Long Parameter List, Long Method). This
type of code smell a�ects the scope of every single method. Second, we have the
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Table 2.2: Code Smells Description
Level Code Smell Description

Method-level

Brain Method Long and complex method that centralizes the intelligence of a class
Dispersed Coupling A method that accesses many elements dispersed among many classes
Feature Envy A method that is more interested in another class than its own class

Intensive Coupling A method that is tight coupled with other methods, and these coupled
methods are defined in the context of few classes

Long Method A method that is long in terms of lines of code
Long Parameter List A method that have a long list of parameters
Message Chain A long chain of methods is called to implement a class functionality

Class-level

Brain Class Long and complex class that centralizes the intelligence of the system
Class Data Should Be Private A class exposing its fields
Complex Class A class have at least one method with high cyclomatic complexity
Data Class A class that contains only fields and accessors methods
God Class A class that centralizes the system functionalities
Lazy Class A class with small dimension, few methods and low complexity
Refused Bequest A class redefining most of the inherited methods

Spaghetti Code A class implement complex methods that interact between them,
with no parameters and using global variables

Speculative Generality A class declared as abstract that have very few children classes using
its methods

Application-level Shotgun Surgery When a change performed on it demands many little changes to
several di�erent classes

class-level smells (e.g., Complex Class and God Class). As the name suggests,
they a�ect the whole class. Last, we have the application-level smells (e.g.,
Shotgun Surgery and Divergent Change). They have this classification since
they can a�ect multiple elements, which can be scattered through di�erent
components on the application. Since the application-level smells a�ect several
elements, they are the most severe ones in a system. Table 2.2 presents 17
types of code smells considered in this study. They were chosen since they are
commonly studied in the literature and are related to design problems.

The relation between code smells and design problems are widely
studied (Trifu and Marinescu 2005, MacCormack, Rusnak and Baldwin 2006,
Moha et al. 2010, Macia et al. 2012a, Macia et al. 2012b, Palomba et al. 2014,
Oizumi et al. 2016). Multiple studies use the code smells as indicators of de-
sign problems, especially because they tend to occur on locations with design
problems (Yamashita et al. 2015, Macia et al. 2012a, Oizumi et al. 2015,
Oizumi et al. 2016). In addition, to identify a design problem using the code
smells, the developer can also use them to prioritize the relevant elements
likely to have a critical design problem, the so-called relevant elements. Next,
we provide the basic terminology for the prioritization process.

2.2.2
Prioritizing Task: Meta Model

As previously mentioned (Section 1.1), prioritization of relevant elements
can be a challenging task. This section provides the basic concepts associated
with the task of prioritizing relevant elements. To better explain the prioriti-
zation of relevant elements, consider the meta-model shown in Figure 2.1. The
meta-model presents all the concepts related to the prioritization of relevant
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Figure 2.1: The Prioritization Task: A Meta Model with Basic Concepts

elements. In addition, it helps us to highlight the scope of the dissertation. For
instance, a design problem can be indicated by one or more types of symptoms,
such as violation of object-oriented principles and poor structural quality at-
tributes (Sousa et al. 2018). However, in this dissertation, we focus only on
the smells a�ecting code elements (Section 1.1). All the process of prioritizing
relevant elements precedes the identification of design problems. Otherwise,
the developers would have to analyze many elements not relevant to design
problems, spending the time that would be better applied in the identifica-
tion of other design problems. We describe below this prioritization of relevant
elements in detail.

As we can see in the meta-model (Figure 2.1), the prioritization of
relevant elements follows three main phases: (i) prioritization of elements, (ii)
prioritization of design-relevant smells, and (iii) confirmation of prioritization.
The prioritization of elements phase occurs when the developer performs a
pre-filtering of the elements he thinks that should be analyzed. Among the
many elements that he ends up analyzing, many of them may not be related
to any design problem. Even if the element contains multiple smells, it may
be the case where these smells are not relevant to the identification of design
problems.

The prioritization of design-relevant smells phase occurs once the de-
veloper chooses an element to analyze. Among the smells that this element
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contains, he needs to decide whether they are relevant or not in the identi-
fication of a design problem. The smells used for the identification of design
problems are the so-called design-relevant smells. Once defined that the ele-
ment contains design-relevant smells, the developer enters the confirmation of
prioritization phase. In this third phase, he confirms whether the previously
selected element is a relevant one to the identification of a design problem or
not. Once he finishes this process of prioritization, then the identification of
the design problem begins, as presented in the Figure 2.1.

2.2.3
Prioritization Task: A Practical Example

To illustrate how complex the prioritization task can become and how
the developers can use the code smells on this task, consider the example
in Figure 2.2. This example illustrates a partial view of a system created
to manage enrollments in a university. As a design decision, a developer
created a component called Service to deal with transactions on the database.
AbstractService is an abstract class that defines the main database operations.
All the other service classes within this component extend the AbstractService.
Thus, this component and the classes related to it are a good starting point to
identify critical design problems, especially taking into account the relevance
of the component to the system.

Once defined the component, the developer needs to choose an element
(in this case a class) to focus his analysis (Phase 1 - Figure 2.1). Among multi-
ple classes in this element, he decided that the InstitutionalEnrollmentService
class should be analyzed, based on the smells that were a�ecting the class.
Therefore, the developer needs to reflect upon these code smells to decide
if they are design-relevant smells (Phase 2 - Figure 2.1). Going through the
methods’ structure, he can find that they contain common code smells such as
Feature Envy and Dispersed Coupling, which were negatively contributing to
its high coupling and low cohesion. He can also find that the reason these code
smells appear in the class is that the class was implanting two concerns, conse-
quently, violating the single responsibility principle (Martin and Martin 2006).
From this analysis, we can see that only considering the code smells, the devel-
oper may have hints about other types of symptoms a�ecting the element. In
this example, the smells indicate that the class violates the single responsibility
principle.

After combining these smells, he concludes that these classes had these
smells (God Class, Feature Envy and Dispersed Coupling) because of the
Concern Overload design problem (Phase 3 - Figure 2.1). Concern Overload
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Figure 2.2: Design Problem Occurring in the UniM System

happens when elements are overloaded with multiple unrelated responsibilities,
which can hamper the maintainability and understandability of the system
(Garcia et al. 2009b). Thus, these code smells were a�ecting these elements
due to this design problem.

In this example, the design-relevant smells to identify the design problem
were located in the InstitutionalEnrollmentService class. Hence, the developer
had to analyze these several code smells and reason about them to choose
which ones he deems useful or not to identify the design problem. Developers
need to reason about multiple code smells since each smell is only a partial
indicator of a design problem. Thus, developers need to analyze and combine
the information of multiple smells to increase his chance to confirm a design
problem. In fact, a study revealed that when code smells appear together
in an element, they have a higher chance to indicate a design problem
(Abbes et al. 2011, Oizumi et al. 2016).

To make the analysis of the elements even harder, the developer also
had to figure out the reason why these code smells a�ected the class. This
reason is information that would help him to judge how useful a smell is to
consider if the element contains a design problem. For instance, the developer
could be analyzing a class that contains a God Class, and the reason for that
is the supposedly high number of lines of code (LOC). However, he may judge
this number low, this way he can exclude this smell from his analysis. In
summary, the analysis of these several smells is cumbersome for developers. In
this example, not only he had to deal with several smells, but he also had to
reason about them as well as to consider the smells a�ecting other elements
during the analysis.
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A heuristic to prioritize the relevant elements could be used by the
developer to avoid the analysis of non-relevant elements. For instance, let
us consider the Persistence, which is another important component in the
UniM system. This component deals with the persistence of the data in the
system. At first sight, the HibernateGenericDao class appear to be a relevant
element, due to its number of smells. This class has more than 10 code smells.
However, on a deeper analysis, the developer noticed that these code smells
are all of the same type: Message Chain. They appeared in the class due to
the framework used in the system. Thus, the developer can discard this smells
from his quest to identify a design problem for two reasons. First, he knows
that this type of smell is not relevant to identify a design problem in his case.
Second, all the smells have the same type. In other words, considering only the
number of smells may not be enough. This scenario shows the importance of
also considering the diversity of the smells in an element in order to prioritize
it.

Since the system may contain even hundreds of smells
(Macia et al. 2012b), choosing the ones that can be helpful can be chal-
lenging to the developer. In addition to the number of smells, they are
scattered over multiple code elements. In addition, a code smell is just a
partial indicator of a design problem, which makes the developer need to
relate two or more smells. Also, analyzing smells that are not related to the
design problem can be time-consuming and can mislead developers to a design
problem that does not exist. This is a scenario where developers would benefit
from heuristics that could prioritize relevant elements. These heuristics would
help them to focus on the code elements containing the smells that may be
helpful to identify the design problem.

2.3
Related Work

In this dissertation, we have the goal of supporting the developer on
the prioritization of a small sub-set of relevant elements in the system. In
order to prioritize an element, the developer has to pre-filter the elements
he thinks should be analyzed, followed by prioritization of its design-relevant
smells (Section 2.2). The output of the prioritization process will help the
developer to identify critical design problems on the system. In this context, we
searched for studies related to (i) the relation of design problem and code smells
(Section 2.3.1), (ii) identification of design problems with other symptoms
rather than just smells (Section 2.3.2), and (iii) prioritization of relevant
elements (Section 2.3.3).
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2.3.1
Relation Between Design Problems and Code Smells

Once identified, a design problem needs to be removed since its
prevalence in the program can lead even to discontinuation of the
system (MacCormack, Rusnak and Baldwin 2006, Godfrey and Lee 2000,
Schach et al. 2002, Gurp and Bosch 2002). Prior to this identification,
the developer has to prioritize the relevant elements that will be used
for the identification. The need to evaluate elements a�ected by code
smells emerges from the lack of design documentation (Kaminski 2007),
which ideally would be used on this prioritization. Additionally, some
studies had presented code smells as indicators of design problems
(Yamashita et al. 2015, Macia et al. 2012a, Oizumi et al. 2016).

Moha et al. (Moha et al. 2010) proposed a method that embodies and
defines the steps necessary to identify and detect code smells and its related
design problems. To validate their method, they asked software engineers to
analyze classes and detect if they had smells. Additionally, they identified re-
lationships between 15 code smells and four related design problems. However,
their technique depends on using a domain-specific language that describes the
code smells to every system.

The study of Abbes et al. (Abbes et al. 2011) analyzed whether systems
with God Class and Spaghetti Code had their understandability hampered.
This study was done with 24 subjects and three di�erent systems, where the
subjects were asked to perform three di�erent program comprehension tasks.
The results revealed that the occurrence of the isolated code smells did not
significantly reduce the understandability. However, the combination of both
smells had a significant negative impact on the software understandability.

Macia et al. (Macia et al. 2012) studied the impact of code smells on the
degradation of the software design. In their study, they analyzed if a sample
of 2056 smells were indicators of design problems. As a result, they identified
that 65% of all code smells were related to 78% of all design problems in the
system. In addition, they found that certain code smells, such as Long Method
and God Class, were consistent indicators of design problems.

Even though these studies demonstrate how the smells can be related
to design problems, they do not investigate how developers could use these
smells in practice. In addition, they do not propose any heuristics to support
the developers on relating smells and design problems. Given this limitation,
we investigate in this dissertation how to support the developers on the
prioritization of relevant elements (Section 1.3).
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2.3.2
Identification of Design Problems with Other Symptoms

The identification of design problems is a widely discussed theme
(Kazman et al. 2015, Ran et al. 2015, Li et al. 2014, Oizumi et al. 2016,
Sousa et al. 2017, Sousa et al. 2018). Although smells are good indicators
of design problems, the developer may use other types of symptoms to identify
a design problem. For instance, Li et al. (Li et al. 2014) investigated if some
modularity metrics indicate design problems. They found two modularity
metrics that can be used as indicators of design problems. The first metric
is the Index of Package Changing Impact (IPCI). This metric quantifies
the independence of packages, based on the percentage of the number of
non-dependency package pairs versus the total number of all possible package
pairs. The second, called Index of Package Goal Focus (IPGF), indicates
the average extent that the services of a specific package have for the same
goal. However, they do not explore how developers could use these metrics in
practice.

Sousa et al. investigated how software developers identify design prob-
lems in practice (Sousa et al. 2018). They conducted a multi-trial industrial
experiment with professionals from five software companies, which resulted in
a grounded theory. Their theory reveals that, in practice, developers rely on
a heterogeneous set of symptoms. Examples of these symptoms include the
violation of design patterns and violation of object-oriented principles.

Despite the fact that these studies examine other symptoms to identify
design problems, rather than just code smells, they did not provide any
heuristic to support developers in this identification. Additionally, they do not
focus on the prioritization of design problems. Furthermore, our methodology,
both to propose and evaluate the heuristics, was more rigorous. We observed
in practice how the developers prioritize relevant elements. This observation
led us to the definition of heuristics aligned with how they prioritize. On the
evaluation, we used di�erent sets of systems, with both open and closed source.

2.3.3
Studies on the Prioritization of Relevant Elements

When it comes to prioritization, there are studies focused on the use of
smells to prioritize elements that have design problems (Arcoverde et al. 2013,
Vidal et al. 2016, Guimaraes et al 2018). Vidal et al. (Vidal et al. 2016) pro-
pose and evaluate a suite of criteria to prioritize groups of code smells that
may indicate design problems. In their study, in order to rank their group of
code smells, they propose heuristics that consider both implementation and
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architectural information of the system, which includes the version history
of the system. However, they did not follow a systematic approach to pro-
pose heuristics. In other words, they did not observe how developers prioritize
smelly elements.

Arcoverde et al. (Arcoverde et al. 2013) presented and evaluated four
heuristics for prioritizing design-relevant code smells. These heuristics explore
characteristics of the software, such as change-density and error-density, to
automatically ranking the code elements that should be refactored according to
its design relevance. Considering the average precision of all projects evaluated,
they reached a maximum of 72.5%, with four projects. However, they did not
follow a systematic and practice-based approach to defining their heuristics.
On the previous sub-section, we described how we defined our heuristics, which
included the observation of prioritization in practice.

The work of Guimaraes et al. (Guimaraes et al 2018) is focused on
prioritizing critical code smells for the identification of design problems. In
their study, they evaluate how developers use both blueprints and source code
to reveal some design-relevant smells. They found that the developers took
too much time to identify the code smells. Thus, they propose a suite of 3
prioritization criteria, aiming to improve this identification. These criteria used
di�erent ways of relating the blueprint elements with the code smells. The
main limitation of their approach is the dependence on design blueprints. As
we mentioned, design information is often outdated or unavailable for many
systems. Thus, such an approach would have little practical application.

In the study of Natthawute et al., the authors tried to deter-
mine how developers prioritized code smells on open source projects
(Natthawute, Shinpei and Motoshi 2018). They asked developers to select and
prioritize code smells on open source projects. Then, they selected the reasons
why the developers prioritized these code smells. They identified two reasons
for the prioritization of code smells: (i) the task relevance and (ii) the smell
severity. However, this study used developers that are not core developers of
the systems. This may hamper the quality of the data gathered, since they
may not know details about the design of the software system being evalu-
ated. Also, they do not consider how this prioritization could be used for the
identification of design problems.

In general, our study overcomes state-of-the-art prioritization approaches
in at least two key aspects. First, our heuristics emerged from observing how
developers perform the prioritization task in practice. In other words, the
heuristics were created based on actions that developers made when properly
prioritizing relevant elements. Thus, the heuristics were created in a way
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that is aligned with how developers performed the prioritization in practice.
This alignment can increase the chance of having developers using these
heuristics on their routine. Most of the aforementioned approaches are based
on information that is often not available in many software projects (e.g. design
blueprints, long history of program versions and the like) (Vidal et al. 2016,
Guimaraes et al 2018). Additionally, we performed our studies with original
developers of each system, which increases the confidence in the collected
information, in particular on the list of design problems a�ecting the systems.
Given the aforementioned limitations of previous approaches, we could not
apply their heuristics in our studies.

2.4
Summary

This chapter presented the main terms and concepts used throughout this
dissertation. In Section 2.1, we defined the main aspects related to software
design and how design problems can appear in a software system. In addition,
we presented the design problems that are investigated in this dissertation.

In Section 2.2, we discussed the prioritization of design problems with
design-relevant smells. First, we detailed the code smells and how they are
related to the identification of design problems. We also presented the code
smells used in this dissertation. Second, we discussed the prioritization of
smelly relevant elements, which precedes the identification of design problems.
To better explain the prioritization task, we provided a meta-model, which
presents the phases of the prioritization of relevant elements. These phases are
(i) prioritization of elements, (ii) prioritization of design-relevant elements and
(iii) confirmation of prioritization. Finally, we presented a practical example
of the prioritization of relevant elements.

In Section 2.3, we discussed the studies related to the prioritization of
relevant elements as well as their limitations. This discussion helped us to
evaluate the state of the art on the prioritization of relevant elements. These
studies included (i) the relation between design problems and code smells, (ii)
the identification of design problems with other symptoms rather than just
code smells and (iii) studies on the prioritization of relevant smells.

Based on the discussion of this chapter, we claim that the use of
prioritization heuristics can better assist developers in prioritizing a small set of
relevant elements among the relevant elements in the system. Thus, to propose
these heuristics, our first step is to conduct a study on how developers prioritize
relevant elements. We have the objective of finding criteria that they use during
the prioritization task. Based on these criteria and the actions taken by the
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developers during the prioritization, we aim to construct our prioritization
heuristics. The next chapter presents this study about how developers prioritize
relevant elements.
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3
On the Prioritization Criteria and Heuristics: A Qualitative
Study

Finding design problems in the system is a major step in the process
of keeping the software system healthy. When neglected, design problems can
even lead to the software discontinuation (Hochstein and Lindvall 2005). The
manifestation of a single design problem can be scattered through multiple
elements in the program. Among the hundreds of elements that a program
may have, the developer is faced with the task of prioritizing the elements
that are candidates of hosting design problems. To prioritize an element, the
developer has to follow a few steps: (i) he chooses the elements that should
be analyzed for some reason, (ii) he analyzes if the element has one or more
design-relevant smells and then (iii) he confirms if that element is relevant
(Section 2.2.2).

However, many smells are not relevant to the design. For example, a code
smell may be merely introduced due to frameworks used in the system and,
therefore, is irrelevant to the design. Thus, just recognizing if the element has
code smells is not enough. Hence, developers have to prioritize the design-
relevant smells, i.e. the ones that are actually indicators of design problems.
The elements with at least one design-relevant smell are the so-called relevant
smelly elements (or, simply, relevant elements) (Chapter 2).

The e�ective prioritization of relevant smelly elements requires the use
of proper information. In particular, the code smells have intrinsic information
(e.g, the smell type) that can help developers during the prioritization of
relevant elements. How developers rely on this information is part of the criteria
they apply to prioritize elements. Therefore, it is necessary to investigate
which of this intrinsic information must be considered. For instance, Oizumi et
al. (Oizumi et al. 2017) investigated the co-occurrence of code smells. They
found that developers have more chance of finding design problems when
explicitly reasoning about such co-occurrences, compared to when they reason
about an element with a single code smell. However, they did not investigate
if developers actually use this information (i.e., smell co-occurrence) when
actually performing the task of prioritizing smelly elements.

In practice, developers can benefit from heuristics based on criteria and
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actions they apply to prioritize relevant elements. These heuristics can benefit
developers by prioritizing a small sub-set of relevant elements, which includes
the prioritization of design-relevant smells as illustrated through the example
in Section 2.2. Before proposing heuristics, we still need to know how the
developers prioritize relevant elements, which includes (i) the criteria that
they take into account during the prioritization and (ii) the actions performed
by them during the prioritization. Thus, we need to know which are these
criteria and actions in order to propose heuristics aligned with how developers
prioritize in practice. To gather this knowledge, we systematically observed
how developers prioritize relevant elements.

We performed a qualitative study where we asked the developers to
prioritize relevant elements in their systems. In this process, we also observed
how they prioritize the design-relevant smells in these elements. We also
asked them to perform the prioritization until they were able to identify a
design problem. Consequently, we could confirm that the element analyzed
was relevant to the design problem identification. This task was recorded on
audio and video, which we used on our data analysis, following the Grounded
Theory (GT) procedures.

This chapter is organized as follows. In Section 3.1, we define the settings
of our study. In Section 3.2, we detail how we collected the data from the tasks
performed on the study. On Section 3.3, we discuss the results of this study,
presenting the criteria and respective heuristics proposed. In Section 3.4, we
present threats to the validity of this study. Section 3.5 presents the final
conclusions in this study.

3.1
Study Settings

This section describes our study settings. Section 3.1.1 presents our goal
and research question. Section 3.1.2 describes the activities performed by the
developers during the experiment. Section 3.1.3 describes the steps taken to
choose suitable scenarios and subjects for our study. Finally, Section 3.1.4
describes the instrumentation used during the study.

3.1.1
Goals and Research Question

In this first study, we aimed at analyzing how developers prioritized rel-
evant elements, with a particular focus on understanding how they prioritized
design-relevant smells on these elements.
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Data Analysis (D)

D2 D3D1

Experiment Activities (E)

E1 E2 E3 E4

Figure 3.1: Studies settings

To answer our first specific research question (Chapter 1), we divided the
study into two parts, as illustrated by Figure 3.1. In the first part, we asked
developers to prioritize relevant elements in their source code. For this task,
they had to analyze their source code using a summary of smells a�ecting the
elements. Details about these smells are presented in Table 2.2. In the second
part of the study, we analyzed how they prioritized the relevant elements. Our
goal in this analysis was to observe the criteria and actions that developers
applied to prioritize relevant elements prior to the identification of design
problems. Finally, we used these criteria and actions to propose prioritization
heuristics. In this context, our goal is to find criteria that developers use to
prioritize relevant smelly elements answering the following specific research
question:

SRQ1.: What are the criteria that developers tend to use to prioritize
relevant smelly elements?

As aforementioned, in order to prioritize the elements, the developers
used a summarized list of smells. Each summary shows the smells of an element
which is a candidate to have a design problem. The summary also contains
the smells’ information, such as the smell type, its definition, and the reason
why it was presented (e.g. threshold and metrics). We took some measures
to observe how the developers prioritized the design-relevant smells in those
elements. These measures include a questionnaire at the end of the analysis of
each element. In this questionnaire, the developer had to answer how helpful
each code smell available in the summary was to the identification of a design
problem. Thus, we could confirm if the smell was a design-relevant smell, which
the developer had to consider to confirm the relevance of a smelly element being
prioritized (Figure 2.1).

3.1.2
Experiment Procedures

The study was composed of four experimental activities (E) (Figure 3.1):
application of a questionnaire for participants’ characterization (E1), training
session (E2), prioritization of relevant elements with the summarized program
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information (E3), application of a follow-up questionnaire (E4). We describe in
detail each of these activities in the following:

E1: Application of a questionnaire for participants’ character-
ization. As outlined in the instrumentation (Section 3.1.4), a questionnaire
was administered to the participants. The goal was to gather information re-
garding education, experience with software development, and the terms used
in the study. This information is summarized in Table 3.1.

E2: Training Session. In this activity, two researchers conducted a
training session with all developers about essential concepts for the study,
such as software design and code smells. We also presented examples of design
problems: Ambiguous Interface, Unwanted Dependency, Component Overload,
Cyclic Dependency, Scattered Concern, Fat Interface, and Unused Abstraction.
We selected these problems with the project managers, who suspected they
were common causes of problems in their projects. However, we made it clear
to developers that they could use the prioritization to identify other types of
design problems with which they were familiar with. The training session was
comprised of a Powerpoint-based presentation (25 minutes long), and a session
for discussions and questions (15 minutes long), if necessary.

E3: Prioritization of relevant elements with the summarized
program information. In this task, we asked developers to use the sum-
marized program information in order to prioritize relevant elements. This
summary contained all the smells a�ecting the element investigated. The de-
velopers also had to answer if each code smell was relevant or not to identify
the design problem. This helped us to discover how they prioritize the design-
relevant smells.

They had 1 hour and 30 minutes to perform the prioritization task in
pairs. They performed this task in a pair as a way to encourage the discussion of
their actions to prioritize a smelly element, consequently allowing more natural
discussions about the prioritization being performed. Thus, we asked them to
verbalize their thoughts, following the think-aloud method, in which we record
it on video and audio during the task. Since the developers had to report the
design problems found, we provided a brief description of each design problem
used in the study. This way, they could use this information during the task.

E4: Application of a follow-up questionnaire. A questionnaire was
administered after the tasks, where the developers were asked about how the
code smells summarized helped in the relevant elements prioritization. We used
the collected data about how developers prioritized relevant elements to extract
the actions and criteria they applied. We explain this analysis in Section 3.2.
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3.1.3
Subjects Selection

For this study, we searched for companies that could provide us with
(i) developers with knowledge about design problems and (ii) systems that
could have design problems considered critical at some point. One of the
motivations for the developers was related to the fact that they would be
doing the prioritization on systems which they currently work. To select the
companies, some criteria were defined, including the level of experience of their
developers, the number of developers working in a project and the development
process on that project. We choose two Brazilian companies that meet our
criteria (C1 and C2). Following, we describe the companies.

C1 is a company that works with renting and selling of printing devices.
Even though they were not an IT company, there is a department specialized in
software development. This department act as a software factory, where they
produce software for their own company or solicited by external customers.
For instance, they produce a management system of their printers, including
its contracts and clients. They also have software responsible for electronic
document management for the company’s clients.

C2 is an incubated company located on the Federal University of Alagoas
(UFAL). They provide multiple services for the university, such as a system
responsible for all the academic registration and control. In our study, we had
access to software developed by the Nucleus of Information Technology (NTI).
NTI is responsible for the systems developed for this university.

After choosing the companies to conduct the study, we contacted the
companies’ managers so they could suggest the systems that met our criteria.
First, systems with di�erent stages of design degradation. Second, systems with
di�erent domains regarding the size, complexity, and number of developers
involved. Last, systems developed in Java. The two selected systems are
described as follows.

– C1: System 1 (S1) deals with tracking the process of arrival and
departure of print devices, contract deals with their customers and
replacement and reusability of compatible machinery pieces. This is a
software system built using micro-services, in which it uses the micro
web framework Jooby. S1 was developed in early 2015, and it is being
used until today. S1 has 11,729 LOC (Lines of Code) written in Java.

– C2: System 2 (S2) is an academic system that facilitates the processes
involving the students, from the enrollment in the institution until the
emission of documents. This is a monolithic software, which uses the
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Table 3.1: Developers’ Characterization
System ID Education

Experience
in Industry

(Years)

Experience
with Java

(Years)

Perform
Code Review?

Familiar with
Code Smells?

Familiar with
Design Problems?

D1 BSc 7 6 Yes Yes Yes
D2 BSc Student 2 0 Yes Yes Yes
D3 BSc Student 4 5 No Yes NoS1

D4 BSc Student 4 4 No Yes Yes
D5 BSc Student 3 3 No No No
D6 BSc 5 10 No No Yes
D7 IT Specialist 13 13 Yes No Yes
D8 MSc 14 12 Yes Yes Yes
D9 BSc 14 12 Yes No Yes

S2

D10 MSc 6 6 No Yes Yes

frameworks Spring, JBoss Seam and Hibernate. It was developed in 2010
and it is on production until today. S2 HAS 71,327 LOC written in Java.

After choosing the systems, the companies’ managers gave us access to
the developers of each system. In our study, we had access to 10 developers,
4 from C1 and 6 from C2. To collect the profile of the developers, we applied
a characterization questionnaire. Table 3.1 presents the developers’ profile.
The first column indicates the system that the developer was working and
performing the prioritization task. The second column represents the ID given
to each developer. The third column presents the highest degree of education
that each developer had. The fourth and fifth columns indicate how many years
of experience the developers had in the industry and with Java, respectively.
The sixth column informs if the developers are familiar with code reviews. The
last two columns present the familiarity of the developers with code smells
and design problems. The prioritization task was conducted in pairs by the
developers, this way on the table they are grouped by the system that they
work and by the pair that they formed.

Observing the Table 3.1, we can notice a heterogeneity on the profile of
the participants. We have developers ranging from BSc students to masters.
It is interesting to notice that one of the developers had none experience with
Java development. However, we took care that he was working with a developer
that had previous experience with Java. Also, even though he did not have any
experience with Java, he had previous experience with important concepts of
our experiment, such as code smells and design problems. We can also see that
all developers had familiarity with at least one of the terms. It would be ideal if
they had knowledge of both terms. However, if the developer knows about code
smells, this might help him to prioritize relevant elements and then identify a
design problem.
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3.1.4
Instrumentation

In our study to investigate how the prioritization task happens in
practice, we used a set of instruments to support the developer on the task
as well as help us on monitoring them. We describe the artifacts used for the
execution of the study as following.

– Companies characterization form: This form was filled by the
companies’ managers. With this form, we could gather information
such as (i) the products provided by the company, (ii) the number of
developers and their experience on design problems, code smells. Based
on this information, we tried to discover if those concepts were part of
the routine of the developers. The form was sent to the managers one
week before the study, where we did a presentation with the key terms
the would be used on the tasks. With this form, we had the purpose
of gathering information about the companies, systems, and developers.
Thus, together with the manager of the system, we could choose systems
and developers for the study.

– Participant characterization form: This form was composed of ques-
tions that characterized the participants regarding education, experience
with software development, experience with Java language and projects
that the developer worked as design reviewer. We collected this informa-
tion to understand the characteristics of each developer and if somehow,
they have some misunderstandings about the concepts used in the study.
This allowed us to prepare and adapt to the training session.

– Task execution records: We recorded the prioritization task, which
included the video and audio captured by Camtasia 1 during the par-
ticipants’ activities. We collected this data to capture the actions that
the developers performed to prioritize the relevant elements. Then we
analyzed it further using grounded theory.

– Follow-up questionnaire: This questionnaire was composed of ques-
tions regarding the prioritization of relevant elements. We also asked
them if the code smells were useful to identify a design problem. Thus,
we could confirm whether these smells were design-relevant smells or not.
These answers were used to support the qualitative analysis.

– Lists of design problems and code smells: We provided to the
developer a list with the descriptions of design problems and code smells.
They could use these lists during the experiment if needed.

1Available at https://www.techsmith.com/video-editor.html

https://www.techsmith.com/video-editor.html
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– Web-framework: The task was performed on the developers’ machines.
The prioritization task was performed in a web ambient that we created.
We built this ambient using Django2 . Django is a Python-based web
framework. The design of the page is meant to be similar to how
SonarQube3 presents the metrics about the software system. We used the
SonarQube as a base for the design since it is a well-known platform to
inspect the software system. Based on this strategy, we could reduce the
learning curve of how the symptoms were presented. While SonarQube
presents information unrelated to the design problem, our web-page
focuses on symptoms that can help with the prioritization of relevant
elements.

– System source code: In parallel with the prioritization task, the
developer also had access to the source code of the system analyzed
using the Eclipse IDE 4.

3.2
Data Collection and Analysis

In this part of the study, we conducted data collection and analysis (D)
(Figure 3.1), which was divided into three steps. In the first step, we applied
Grounded Theory (GT) procedures (D1) (Strauss and Corbin 1998)
over all collected data (audios, videos and questionnaires). The procedures
comprise three phases. Open coding (1st phase) involves the breakdown,
analysis, comparison, conceptualization, and the categorization of the data.
We applied it after the transcription of all audios and videos. The open coding
process was subdivided into three steps. In the first step, two researchers were
responsible for the transcription over the data collected on the videos and
audios. Each researcher was responsible for half of the videos. In the second
step, a third researcher was introduced. In this step, the first two researchers
reviewed the transcriptions of each other while the third researcher reviewed
all the transcriptions. In the third step, the three researchers did the open
coding. These codes were associated with quotations of developers’ utterance.

The Axial coding (2nd phase) examines the relations between the iden-
tified categories. In this phase, the codes were merged and grouped into cat-
egories that they were related to. The codes were then placed on networks
representing the connections between them. The codes, categories, and net-
works were then revised, and there was a discussion among the researchers
until they reach an agreement.

2Available at https://www.djangoproject.com/
3Available at https://www.sonarqube.org/
4Available at https://www.eclipse.org/ide/

https://www.djangoproject.com/
https://www.sonarqube.org/
https://www.eclipse.org/ide/
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The Selective coding (3rd phase) performs all the process refinements
by finding the core category. Therefore, we created codes for the developers’
speeches (1st phase). After, these codes were related to each other through
axial coding (2nd phase). We did not apply the selective coding as we were not
aiming to reach a theoretical saturation, as expected in the GT method. Thus,
we do not claim that we applied the GT method, only some specific procedures.
Each transcription, code, and the relationship among categories were reviewed,
analyzed and changed upon agreement with the other researchers.

In the analysis step, we analyzed the GT codes (D2) to find actions
and criteria used by most developers and that contributed to the prioritization
of relevant elements and its design-relevant smells. We analyzed the codes
when the developer confirmed a design problem. For instance, to confirm a
design problem, they considered the number of code smells on an element,
or if this element had di�erent types of code smells. As the developer follow
this procedure to confirm the design problem, we labeled this procedure as an
action.

In addition to the identification of design problems, one of the steps of
the study was to confirm if a code smell was useful in the identification of the
design problem in the element. Since we were recording this task, we could
grasp what information the developers used to confirm that the code smell
was useful to the identification. Otherwise, we also observed what made them
discard a code smell of the identification in case it was not useful. Observing
how developers evaluated the usefulness of each smell allowed us to find the
program elements with design-relevant smells. Then, we analyzed these actions
during the (i) prioritization of relevant elements and (ii) discussion on how
useful or not the code smells were. We used those actions to extract criteria
used by developers to prioritize relevant elements (Section 3.3).

Finally, we used the criteria found in the previous activity to propose
the heuristics (D3). To propose them, we combined the criteria found with
actions taken by the developers during the prioritization of relevant elements.
In the next section, we describe these heuristics.

3.3
Prioritization Criteria and Heuristics

In this section, we provide the answer to our SRQ1:What are the
criteria that developers tend to use to prioritize relevant smelly elements?. In
Section 3.3.1, we present the general criteria and heuristics that the developers
tend to use on the prioritization of relevant elements. In Section 3.3.2, we
present the specific criteria and a brief explanation of how their heuristics can
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be implemented. In Section 3.3.3, we complement our suite of heuristics with
other heuristics derived from actions (Section 3.2) that developers performed
when they were prioritizing relevant elements.

After analyzing how developers identify critical design problems, we
found the criteria that they use to prioritize relevant elements. We divided
these criteria into two groups: general and specific. The general criteria are
smell type, number of smells and type diversity. They are defined as general
since they use information that does not vary from one system to another,
i.e., they are independent of the analyzed systems, which make them general.
The specific heuristics are element role, and relation. We consider them to be
specific due to their dependence on information extracted from each system,
which makes them specific for each system. To give examples about how the
heuristics work, we will be referring to the example presented in Chapter 1 -
Figure 1.1. Each heuristic returns a set of TOPN elements, where N is the
number of elements prioritized – this value can be defined by the developer
who uses the heuristics.

3.3.1
General Criteria and Heuristics

This section presents the three general criteria observed in the study,
namely smell type, number of smells and type diversity. For each criterion, we
present the proposed heuristic.

Smell Type. This criterion is based on which type a smell belongs. For in-
stance, a code smell can be of the type Long Method, God Class, Intensive Cou-
pling, and so on. The code smell types used in this dissertation are presented
in Table 2.2. The type of the symptom indicates, at least partially, what may
be wrong with the element. For instance, let us consider the DeviceRepository
class in the example from Figure 1.1. This class has the getDevice with a Dis-
persed Coupling smell. This type of smell indicates that the method is accessing
multiple operations across an excessive number of classes, which is due to the
Concern Overload design problem found in the class (Figure 1.1). Smells can
be identified directly in source code, which is often the only available artifact.
There is a wide variety of accurate strategies for detecting smells in a program
(Aniche et al 2016, Vale, Fernandes and Figueiredo 2018, Macia et al. 2012a,
Macia et al. 2012, Macia et al. 2012b). They are part of developers’ routine
(Yamashita and Moonen 2013) and act as hints for refactoring (Fowler 1999),
helping developers to partially or fully remove design problems.

Depending on its type, a smell may a�ect elements located in di�erent
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scope levels of the system (Section 2.2.1). For instance, smells such as Shotgun
Surgery and Divergent Change a�ect multiple elements, possibly located in
di�erent components of the system. Thus, they are considered to belong to
the application level. A smell such as God Class a�ects an entire class; thus,
it belongs to the class level. Finally, a smell such as Long Method a�ects just
a method, belonging to the method level.

During the experiment, the developers did not explicitly declare that
they were choosing a smell to analyze due to its scope. However, analyzing
their actions during the prioritization task, we observed that they tended to
dedicate more time (and e�ort) in the analysis of class-level smells. In some
cases, they even discarded some method-level smells after analyzing the class-
level smells. For instance, the pair composed by developers D7 and D8 analyzed a
class with five code smells, from which three were method-level smells (Feature
Envy, Message Chain and Dispersed Coupling) and two were class-level smells
(Complex Class and God Class). During their analysis, they considered only
the two class-level smells as relevant to identify the design problem Concern
Overload.

We decided to expand this concept of prioritizing smells according to
their scope. Thus, the proposed heuristic prioritizes first the application-level
smells, then the class-level smells, and finally method-level smells. This decision
was taken since a class that presents an application-level smell is likely to be
related to other classes that may also be a�ected by a design problem. Thus,
prioritizing this class would be a good starting point for developers to prioritize
other classes that may be part of the design problem.

In this sense, we derived the Smell Granularity heuristic. This heuristic
prioritizes first elements with application-level smells, followed by the ones with
a class-level smell, then the elements with method-level smells. Algorithm 1
presents the pseudo-code for this heuristic. It receives as input the project P

that should be analyzed and the number N of elements that the developer
wants to prioritize. In Line 1, the algorithm uses a tool5 to collect the code
smells. This tool implements detection rules for the 17 code smells used in
our study. It also returns a list of all elements of the system, their respective
code smells, and the metrics and thresholds used to confirm if the element
has a code smell (Phase 1). In Line 2, the algorithm iterates over all the
elements with code smells collected and then categorizes their respective smells.
This categorization is divided into application, class, and method (Phase
2). In Line 6 those elements are sorted based on the respective numbers of
application smells, class smells and method smells (Phase 3). Finally, in Line

5Available at https://github.com/opus-research/organic

https://github.com/opus-research/organic
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7 the algorithm returns the N relevant elements.

Algorithm 1 Smell Granularity Heuristic
Input: a project P , a number N of elements
Output: The TopN relevant elements

1: listElementsWithSmell Ω extractCodeSmells(P ) {Phase 1}
2: for all element œ listElementsWithSmell do
3: categorizedSmells Ω categorizeSmells(element) {Phase 2}
4: listCategorizedSmells.insert(categorizedSmells)
5: end for
6: topN Ω sortSmellsByCategories(listCategorizedSmells, N) {Phase 3}
7: return topN

Number of Smells. This criterion indicates how many smell instances an
element contains. For example, the DeviceRepository (Figure 1.1) has 51
smell instances; ClientRepository, in its turn, has 21 smell instances. In this
criterion, the smell type does not matter, only the number of instances a�ecting
an element. As an example of how developers applied the criterion, let us
consider the pair of developers D3/D4. When they were analyzing the smells in
the class, they noticed that the class had several smells. Due to this number of
smells, the developers concluded that the class should be prioritized since it was
relevant to the identification of a design problem. In fact, they mentioned that
due to the number of smells, they could see it potentially had a design problem,
which developers were able to identify it later on. To illustrate an example of
how developers used the number of smells criterion, we briefly summarize their
actions (A). These actions happened when developers noticed the relevance of
the element due to its number of smells. This moment is represented by the
actions and quotation of developers’ utterances:

A1: Developers identify the high number of smells on the class;

A2: Developers start analyzing the class;

A3: Developers speculate the presence of a design problem due to the
number smells;

A4 Developers use the smells to analyze the class;

A5: Developers declare the class as a relevant element:

D4: “This (class) is very relevant (for the identification)! We
can see that there is a (design) problem, right?”

A6: Developers confirm the presence of a design problem.
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We derived the Smell Count heuristic based on how developers used
the number of smells criterion. This heuristic finds elements that have the
greatest number of smell instances. For example, in the example Figure 1.1,
the heuristic would suggest to developers prioritize DeviceRepository over
ClientRepository since the former has more smell instances (51) than the
latter (21). Algorithm 2 presents the pseudo-code for this heuristic. In Line
1 the elements with smells are collected by the Organic tool. In Line 3, the
algorithm iterates over this list of elements and for each element it computes
the respective number of code smells. In Line 4, these computed number of
smells are saved in a tuple: (element, number of smells). In Line 6 the tuple
is sorted in descending order, based on the number of smells. Finally, in Line
7 the N elements with the highest number of code smells are returned.

Algorithm 2 Smell Count Heuristic
Input: a project P , a number N of elements
Output: The TopN relevant elements

1: listElementsWithSmell Ω extractCodeSmells(P )
2: for all element œ listElementsWithSmell do
3: smellsByElement Ω countSmells(element)
4: nSmells.put(element, smellsByElement)
5: end for
6: topN Ω sortDescByNumberOfSmells(nSmells)
7: return topN

Type Diversity. This criterion represents the number of di�erent smell types
in an element. For instance, on Figure 1.1, UserRepository has 12 smell
instances, which are from six di�erent types. Thus, its diversity is equal to six.
We noticed that this criterion was the least used by developers to prioritize
elements – only one team used it. However, developers used it frequently to
confirm that an element had a design problem. In this case, they confirmed
after using used another criterion to choose (i.e, prioritize) a relevant element
to analyze.

As an example of how developers used the Type Diversity criterion, let
us consider the pair of developers D7/D8. First, they analyzed a class A with a
diversity of five smells, in which they identified the design problem Concern
Overload. Next, they had to find another element to analyze. At this moment,
the developers started to search for classes with similar characteristics as the
class A. Then, they found class B. They prioritized this class because it had
a diversity of five smells as well. As soon as they saw this similarity between
the classes, they mentioned other classes that also were similar regarding the
diversity of smells. Consequently, developers used the Diversity criterion to
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prioritize other classes. The following actions (A) and quotations present the
moment where they use the diversity of smells to choose the other elements to
prioritize.

A1: Developers identify that class A has diversity equal to five;

A2: Developers start analyzing class A;

A3: Developers use the smells to analyze the class;

A4: Developers identify a Concern Overload in class A;

A5: Developers search for classes with similar characteristics of A;

A6: Developers identify that class B is similar to A in its diversity of
smells – both classes have five smells:

D8: “Yes, I think that (class B) is similar to the other (class
A).”

A7: Developers prioritize class B due to its diversity of five smells;

A8: Developers decide to use diversity as a criterion to prioritize other
elements:

D8: “In fact, I think that the next (class) will be quite similar
(to both classes A and B).”

Based on how developers used the Type Diversity criterion, we derived
the Diversity heuristic. This heuristic finds elements with the greatest number
of di�erent smell types. For example, ClientRepository has diversity equal
to four, and UserRepository has diversity equal to six. According to this
criterion, developers would prioritize UserRepository over ClientRepository,
even though the latter has more smell instances (21) than the former (12).
For this heuristic, we will only describe how it works, since the algorithm is
similar to the Smell Count heuristic. For the Diversity heuristic, the smells of
the projects are collected, then the algorithm computes the number of di�erent
types of code smells on each element and saves it in a tuple: (element, number
of di�erent types of smells). The algorithm sorts this tuple is in descending
order, based on the number of di�erent types of smells. Finally, the algorithm
returns the N relevant elements with most diversity of code smells.

These three criteria are related to each symptom a�ecting an element.
Additionally, these criteria are independent of the systems. Consequently,
we were able to propose three heuristics that, in theory, can be applied to
any software system. Conversely, the remaining two criteria (element role
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and relation) depend on subjective information of the system. Element role
represents the responsibility that an element has in the system. Relation
indicates how symptoms interact with each other. We will describe these
specific heuristics next.

3.3.2
Specific Criteria and Heuristics

In the previous subsection, we discussed three criteria that are indepen-
dent of the systems. The remaining two criteria (element role and relation)
are somehow dependent on subjective information of the system. An example
of subjective information is to what extent a program element is related to a
certain requirement. As these criteria depend on the analyzed system, we de-
rived specific heuristics. These heuristics are most complex both regarding the
underlying criterion and the e�ort to automate them. We present the specific
criteria and their derived heuristics as follows.

Element Role. This criterion represents the responsibility that an element
has in the system. This criterion helps developers to focus on specific elements
they know what to expect. For instance, let us consider developers D7/D8. They
were analyzing classes responsible for implementing services in the system. In
this case, these service classes were responsible for the database transactions
in the system. When they analyzed class C, they identified a set of smells that
led them to identify the design problem Concern Overload. When they started
to analyze a second class (D), which was also responsible for the same services,
they noticed that this class had almost the same set of smells. The actions
(A) and quotations below present the moment where the pair D7/D8 used the
element role as a criterion to prioritize a relevant element.

A1: Developers start analyzing class C with a specific role in the system;
A2: Developers use the smells to analyze the class;
A3: Developers identify a Concern Overload;
A4: Developers search for classes with a similar role to class C;
A5: Developers start analyzing class D responsible for the same role as
class C;
A6: Developers notice that both classes C and D have a similar set of
smells.

At this point, they realized that the classes that were implementing
services for database transactions (i.e., elements with the same role) should be
prioritized first in case they have a similar set of code smells.
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D8: “I think that all services (classes) will be... (a relevant ele-
ment)”

D8: “This (class D) is very similar to the other (class C)”

D7: “Yes, I think that (class D) is very similar to the other (class
C). In fact, I believe that the next service also will be similar (to
the classes C and D)”

Indeed, when they analyzed the third class (E) related to a service,
they also identified the design problem Concern Overload. At this point, they
confirmed that all service classes would be relevant elements on their analysis.
The following quotation presents this moment.

D8: “(The class) is (implementing) the same (service) as the
other.”

D8: “All the services are like that. This mess.”

This criterion derived the Role heuristic. This heuristic chooses the el-
ements that have the same role in the system. Thus, developers can ana-
lyze them together. Additionally, they may know what to expect from the
elements based on their role played in the system. To identify the role
of each element for this heuristic, we can use the study of Doséa et al.
(Dósea, Sant’Anna and Silva 2018), where they extract the design role of the
class based on its name. For instance, the class DeviceRepository would be
automatically assigned as a class responsible for the repository role. Once we
extracted the roles of the elements, we can group them and present to the
developers.

Relation. This criterion comprises cases where two symptoms are related
to each other. Developers use di�erent information to relate symptoms. For
instance, if two symptoms co-occur in the same method, developers can use
the scope of the method to relate them. Hence, if they co-occur in the same
method, there is a change of they be a result of the same design problem.
Developers also use the smell type to relate them. For instance, they can
relate intensive coupling with the dispersed coupling. Both smells are from
di�erent types, but they indicate, in their own way, the same characteristic:
coupling. The way developers relate the symptoms may di�er from one system
to another. For instance, on the relation of symptoms based on their semantic
relation, it will depend on the role that the elements a�ected by the symptoms
play in the system.
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Developers sometimes explicitly mentioned most criteria when they were
discussing, for instance, they mentioned the number of smells and diversity
of smells, or even the role played by the elements. However, regarding the
relation criterion, we noticed that developers did not explicitly mention the
need to relate two or more smells. Instead, they have naturally related the
smells.

For instance, when developers D1 and D2 were analyzing class F, they
noticed that method M1 had Feature Envy and Intensive Coupling. Later on,
they used both smells to identify the Concern Overload design problem in
the element. Before identifying the design problem, they analyzed a second
method (M2) that had five code smells (Feature Envy, Message Chain, Dis-
persed Coupling, Long Method, Brain Method). They dedicated more time in
analyzing the method (M2) and further using it to confirm the design problem
on the class. What is interesting in this example is how developers related the
smells. In this case, the developers used two types of relations. First, they used
the structural relation in both methods, since the smells were related to each
if they were a�ecting the same method. Second, we noticed that they used
the semantic relation between the smells a�ecting both methods: the Intensive
Coupling in the method M1, and the Dispersed Coupling in the method (M2).
Developers used these relations to identify the design problem, and posteriorly
to prioritize elements with code smells that had similar relation among them.

This criterion derived the Relation heuristic. This heuristic selects the
elements that contain more smells related to each other. This heuristic can be
divided into three other heuristics according to the type of relation:

Structural Relation. In this heuristic, the smells are related to each
other because they a�ect the scope of the same element or because they
a�ect elements that implement the same functionality. This criterion
is based on the study of Abbes et al. (Abbes et al. 2011), where they
identified that elements identified with God Classes and God Methods
isolated, i.e, elements that had either a God Class or a God Method,
but not both, had no e�ect on maintenance e�ort. However, when these
smells appeared together, they led to a statistically significant increase
in maintenance e�ort. Thus, we could use the structural relation between
smells to prioritize the elements containing this relation. To build this
heuristic, we could start by adapting the algorithms proposed by Oizumi
et al. (Oizumi et al. 2016), which build groups of smells based on their
structural relation. Hence, we could prioritize the elements a�ected by
those groups of smells.
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Semantic Relation. In this heuristic, the smells are related to each
other based on the same concept, i.e, they represent the same conceptual
characteristic. For instance, Feature Envy and God Class are related to
the cohesion between elements. Thus, they have a conceptual relation
according to cohesion. To identify the relation between smells for this
heuristic, we will use the semantic relation defined by the study of Oizumi
et al. (Oizumi et al. 2016). Code smells are semantically related if they
are addressing the same concern. This concern may be a functionality of
the system. To build this heuristic, we could start by using the concepts of
agglomerations, defined by Oizumi. Agglomerations are groups of inter-
related code smells. This way, we could use the elements a�ected by the
agglomeration as the priority elements.

Role-based Relation. We decided to expand the relation criteria with
this heuristic, which is a variation of the Element Role heuristic. This
heuristic indicates elements that are related to each other because they
play the same role in the system and have a similar set of smells. Thus,
developers should analyze them together since these elements present the
same characteristics. For this heuristic, we could use the smell type as
a parameter to group the elements. This way, first we would group the
elements based on its roles on the system and then do a new group based
on the types of smells that the elements had. In this heuristic, the more
common smell types a group has, the highest priority it will have.

3.3.3
Combined Criteria

We found that developers tend to combine multiple criteria when priori-
tizing elements. Each combination usually consists of a dominant (or primary)
criterion, followed by a secondary criterion used as a tiebreaker. For instance,
a developer is likely to first find a set of elements with the highest number of
smell instances. If two or more elements have the same number of instances,
developers put on top the element with the highest number of smell types. We
expanded our suite of heuristics based on how they combined the criteria.

We highlight that the actions that developers did to combine multiple
criteria were long and complex. Hence, we will not provide quotations of
developers’ utterances regarding the moments that they combined criteria.
Otherwise, the quotations would be too long and containing unnecessary
information that would be hard to understand how the combination took place.
Instead, we will discuss each combination based on the example presented in
Figure 1.1 (Chapter 1).
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Number of Smells with Type Diversity. The number of smells was the
second most used criterion to prioritize elements, while diversity was a criterion
that developers used to confirm if an element has a design problem. Hence,
we derived the heuristic Smell Count & Diversity, which combines these
two criteria. Algorithm 3 presents the pseudo-code for this heuristic. In Line
3, this heuristic applies the number of smells criterion to sort the elements
in descending order according to the number of smell instances (Phase 1).
Then, in Line 6 it returns the TOPN elements (Phase 2) (If there is no tie
between the first N elements – N is defined by the developer). In Line 7,
the algorithm verifies if the list of top elements is bigger than the number of
elements that should be returned. In this case, in Line 8, it is applied the type
diversity criterion to break a tie between elements (Phase 3). For example, let
us suppose that a developer only has time to analyze three classes (TOP3).
This heuristic selects the elements with the greatest number of smell instances.
Thus, it selects classes A (10 instances of 3 smells), B (9 instances of 3 smells),
C (7 instances of 2 smells) and D (7 instances of 3 smells). Since there is a
tie between C and D based on smell instances, the heuristic uses the diversity
criterion to break the tie between C and D, selecting D since it has more types.

Algorithm 3 Smell Count & Diversity Heuristic
Input: a project P , a number N of elements
Output: The TopN priority elements

1: listElementsWithSmell Ω extractCodeSmells(P )
2: for all element œ listElementsWithSmell do
3: dictNumber(element, nSmells) Ω countSmells(element) {Phase 1}
4: dictType(element, nTypes) Ω countTypes(element)
5: end for
6: topN Ω sortElements(dict, N) {Phase 2}
7: if topN.lenght > N then
8: topN Ω runT ieBreaker(topNElements, dictTypes) {Phase 3}
9: end if

10: return topNs

Type Diversity with Number of Smells. Similar to the previous heuristic,
we also derived a heuristic that combines the number of smells and diversity of
smell types. However, the primary criterion here is the diversity criterion. The
number of smells criterion is applied to break a tie between elements, in case of
any. The Diversity & Smell Count heuristic first chooses the elements that
have the greatest number of di�erent smell types. If the TOPN elements have
the same number of smell types, the heuristic analyzes their di�erent types
and prioritizes the elements with more smell instances.
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Number of Smells with the Smell Type. Since the number of smells and
the type of smell were the two most used criteria, we also derived a second
heuristic that combines them. In this case, a heuristic that combines the
number of smells with how developers used the code smells. The heuristic
Smell Count & Granularity prioritizes the elements based on the number
of smells criterion to return the TOPN elements. In case of a tie between the
elements, it uses the level of each smell as the secondary criterion. Elements
with the highest number of application-level smells are chosen first. If the tie
persists, the number of class-level smells is used to choose the element with
the most number of class-level smells. For instance, let us suppose that A and B
classes are in the TOPN borderline with five smells each, but only one should
get in. A has God Class, Complex Class, and two Long Methods, and B has God
Class, two Long Methods and two Feature Envies. Since both classes do not
have any application-level smell, the heuristic considers the class-level smells
to break the tie between A and B. In this case, A class is chosen since it has two
class-level smells (God Class, and Complex Class) instead of class B, which has
only one.

Type Diversity with Smell Type. Finally, we combined the diversity of types
with how developers used the code smells. The Diversity & Granularity,
similar to the previous heuristic, uses the level of each smell in case of a tie.
However, it considers the diversity criteria to conduct the first prioritization.
For example, consider D class as having God Class, Complex Class, and Long
Method smell, while E class has Duplicate Code, Complex Class, and Feature
Envy. Both classes have the same number of smell types (three), and both are
in the TOPN borderline. However, E has an application-level smell (Duplicate
Code). Therefore, E is chosen to be part of TOPN instead of D.

Smell Type with Number of Smells and Type Diversity. We also created
two other heuristics, now using the category of the smells as the first criteria
in the combination. This two remaining heuristics were the Granularity
& Smell Count heuristic and Granularity & Diversity heuristic. Both
use the premise of the previously described heuristics. First, we consider the
category of the code smell to sort the elements, then, if there is a tie on the
TOPN elements, we use the second criteria. In this case, the second criteria
are respectively the number of smells and the variety of smells types.

DBD
PUC-Rio - Certificação Digital Nº 1712655/CA



Chapter 3. On the Prioritization Criteria and Heuristics: A Qualitative Study54

3.4
Threats to Validity

This section presents threats to the validity of our study. For each threat,
we provide the actions taken to mitigate its impact on the final results.

Construct Validity. We provided a set of symptoms of design problems
to the developers. This data could introduce a bias in the study. However,
these symptoms were chosen considering the literature (Oizumi et al. 2016,
Macia et al. 2012a, Macia et al. 2012b, Macia et al. 2012, Gamma et al. 1995,
Fowler 1999). Also, the companies’ managers informed that the developers had
previous experience with some of the symptoms and used them on a daily basis.
The time allocated for the identification task could be considered another
threat to validity. However, we conducted a pilot study to adjust the time
required to perform the tasks and thus reduce the threat.

Internal Validity. The di�erence between the developers’ background knowl-
edge can be a threat. To mitigate this threat, we provided a training session to
ensure a common knowledge base for all participants. Moreover, all developers
had knowledge at least in one of the main themes in our study (design prob-
lems and code smells). Nonetheless, we saw the diversity of the developers’
experience as an opportunity to generalize our results.

External Validity. The number of subjects represents another threat. All
subjects worked for Brazilian companies. To mitigate this threat, we expanded
the number of subjects in our second study (Chapter 4).

Conclusion Validity. The participation of the author who followed the GT
procedures poses another threat. His beliefs might have caused some distortions
when interpreting the data. To mitigate this threat, the GT coding activities
were shared with other researchers. This way, at the end of the coding process,
the (two) researchers merged their results and discussed until reaching a
consensus. The way that developers prioritized the elements poses another
threat to our study. We do not know if the actions and criteria that they
used are the most suitable to the prioritization of relevant elements. To
mitigate this threat, we designed and performed the second study (Chapter 4),
where we evaluated the heuristics. We evaluated the heuristics based on their
e�ectiveness in finding a small sub-set of relevant elements. Consequently, we
will be able to evaluate whether the criteria were suitable for the prioritization
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3.5
Summary

This chapter presented the first study to provide to support for developers
along with the prioritization of relevant elements. In the first study, we asked
the developers to prioritize elements relevant to the identification of design
problems in their own source code. To prioritize the elements, they used a
summarized list of smells. Each summary showed the smells of an element
which is a candidate to have a design problem. Through qualitative analysis
about how developers identify design problems, we found five criteria that they
tend to use to prioritize relevant elements. The criteria are smell type, number
of smells, type diversity, element role, and relation.

Based on these criteria, we derived a suite of prioritization heuristics.
This suite contains heuristics that can be applied in any system, i.e., they are
independent of the analyzed systems. We also derived heuristics that dependent
on the system. Additionally, we also noticed that developers tended to combine
criteria, which lead us to derived heuristics that combined di�erent criteria.
Each combination usually consists of a dominant (or primary) criterion,
followed by a secondary criterion used as a tiebreaker.

In the first study, we identified the criteria that developers use to
prioritize elements. As a result, we used these criteria to propose a set of
heuristics. We also identified some intrinsic information that the developers
did not use during the prioritization. However, we are aware that the way
developers performed the prioritization may not necessarily be e�ective in
certain settings of di�erent projects. For instance, they could be prioritizing
certain elements with a di�erent objective than the identification of design
problems. In addition, they could be missing some design-relevant smells
and then failing in prioritizing a relevant element. Due to this threat, we
need to examine if the prioritization performed in practice was suitable to
propose prioritization heuristics. Hence the need for evaluating these proposed
heuristics in order to verify if these criteria used by developers were suitable
to propose prioritization heuristics. In this context, we need to conduct an
evaluation of the e�ectiveness of the heuristics in terms of finding a small sub-
set of relevant smelly elements. In the next chapter, we describe the study that
we conducted to evaluate our heuristics.
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4
Evaluations of the Prioritization Heuristics

In our quest to support developers with the prioritization of relevant
elements, we investigated how they perform this prioritization. Based on the
previous study (Chapter 3), we proposed a suite with nine prioritization
heuristics. After proposing these heuristics, our next step is to investigate
if they can support the developer on prioritizing relevant elements. The
evaluation of these heuristics is required as we do not know if the criteria used
by developers in the previous study are suitable for the e�ective prioritization
of relevant elements. For this purpose, we conducted a study to evaluate our
nine prioritization heuristics. Even though we have outlined a proposal of
specific heuristics (Section 3.3), in this dissertation, we focused on evaluating
the general ones.

We decided to concentrate on the evaluation of the general heuristics
for a couple of reasons. First, they are independent of the analyzed system.
Therefore, they can be applied and replicated in multiple systems without
requiring additional information from their developers. Second, they only need
the symptoms as input. In our case, they only need the code smells. Therefore,
we can automate its evaluation by applying them to several systems. For this
purpose, we are able to run a tool that collects the code smells of each system.
In our study, we used the Organic1 tool to collect the smells because it provides
all the information required by the prioritization heuristics.

To evaluate the nine heuristics in our study, we selected two sets of
projects. For each project, we created a ground truth, which consists of a list
of elements prioritized by the developers. In the first set of projects, we chose
software projects, from the GitHub, that had a certain degree of structural
degradation. To create the ground truth, we identified those elements that
developers focused their e�ort in refactoring, probably due to the presence of
a design problem. In the second set of projects, we picked projects from our
industry partners, in which the systems’ original developers provided us with
the list of design problems in their systems. We used the elements a�ected
by those design problem as the relevant elements. Once we collected this
list of relevant elements, we ran our selected heuristics on the projects and

1Available at https://github.com/opus-research/organic

https://github.com/opus-research/organic
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compared our list of prioritized relevant elements with the list of relevant
elements prioritized by developers.

Once evaluated, we identified that two of our heuristics reached the best
precision results. These heuristics were the Diversity and Smell Granularity.
They had the best precision since they consider the types of smells a�ecting
the elements. The Smell Count heuristic failed in prioritizing elements with
design problems. However, this heuristic was able to prioritize elements that
developers should dedicate e�ort in their refactoring. From these results, we can
observe that the heuristics that consider the intrinsic information of the smells
(e.g. smell type), are likely to support the developers on the prioritization of
relevant elements.

This chapter is divided as follows. Section 4.1 presents the settings of the
study proposed to evaluate the heuristics. Section 4.2 comprises the study
results and discussions. Section 4.3 presents the threats to the validity of
this study, and how we have tried to mitigate each one. Finally, Section 4.4
summarizes the findings of the study.

4.1
Study Settings

This section comprises the settings for this study. Section 4.1.1 defines the
goals and research question. Section 4.1.2 presents the experimental activities
performed in the study. Section 4.1.3 details how we created our ground truth
for further evaluation.

4.1.1
Goals and Research Question

Developers may need to evaluate many elements to identify a design
problem. Some of these elements are not relevant to design problems. Analyzing
them can be a waste of time, that could be better used analyzing relevant
elements. Additionally to the relevant elements, the developer has to analyze
the code smells a�ecting them, in order to confirm if they are design-relevant
smells. In fact, prioritizing relevant elements is a task that precedes the
identification of design problems. Thus, developers can benefit from heuristics
that prioritize these relevant elements.

Our heuristics aim to prioritize relevant elements, more specifically,
they aim to prioritize design-relevant smells on elements that have critical
design problems. Therefore, our goal is to investigate if they can prioritize
elements that have design-relevant smells, and, obviously, elements with design
problems. To achieve this goal, we evaluated our suite of heuristics based on
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their e�ectiveness finding relevant smelly elements in a top priority list of
elements, aiming to answer the following specific research question:

SRQ2. What is the precision of the prioritization heuristics?

To answer SRQ2, we conducted two evaluations to compare the list of
elements prioritized by developers in their systems (Section 4.1.3) with the list
of prioritized elements found by the heuristics. These evaluations di�er in two
points: (i) the set of systems used in the evaluation, and (ii) how we created
the list of elements prioritized by developers. We explain these di�erences in
detail in Section 4.1.2. Regardless of the evaluation, we applied the heuristics
to find the list of prioritized elements. Each heuristic returns TOPN relevant
elements. The value of N i.e, how many relevant elements the heuristic should
return, is defined by the developer. For our evaluation, we start by evaluating
the top three elements (TOP3). After that, we evaluate the list of relevant
elements with other sizes. We decided to reduce our set of relevant elements
to only three because developers are likely to prioritize only a few elements,
especially due to time constraints and e�ort to identify and remove design
problems.

Our heuristics receive the code smells as input. We focused on code
smells for some reasons. First, the goal of this dissertation is to investigate
design-relevant smells. Hence, smells are the only category of symptom that
we are interested in right now. Second, smells are part of developers’ routine
(Yamashita and Moonen 2013) and one of the most investigated type of symp-
tom (Eick et al 2001, MacCormack, Rusnak and Baldwin 2006, Bertran 2011,
Macia et al. 2012a, Macia et al. 2012b, Moha et al. 2010, Sousa et al. 2018,
Palomba et al. 2014, Yamashita and Moonen 2013). Third, smells can be iden-
tified directly in source code, which is often the only available artifact, and they
can be identified with accurate and customizable detection strategies validated
in the literature (Aniche et al 2016, Vale, Fernandes and Figueiredo 2018).
Fourth, restricting our heuristics to smells, we can focus on evaluating them. If
we have used other category of symptoms, we could have introduced variables
that would make the evaluation harder.

We expected that the Smell Granularity heuristic would achieve good
results since developers tended to rely on the type of smells to do the
prioritization (Chapter 3). However, Smell Count outperformed the simple
heuristics, including Smell Granularity. We also expected that the combined
heuristics would achieve good results since the combination of criteria was a
common practice among developers. Yet, in many cases, they had the same
precision as the simple heuristics.
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Heuristic Evaluations (EV)

EV1 EV2 EV3 EV4

Figure 4.1: Study 2 settings

4.1.2
Experimental Activities

We followed four activities to evaluate our heuristics, as presented in
Figure 4.1. First, we selected the projects that were suitable for the evaluation
(EV1). Second, we created a ground truth (EV2) that would be used on the
last step. Third, we ran our heuristics in the selected project (EV3). On the
last activity, we computed the precision of our heuristics (EV4). Following, we
describe in detail each one of these activities.

Projects Selection (EV1). In the first activity, we selected 17 software
projects, which we divided into two groups. Each group was assigned to one
of our two evaluations. For the first group, we selected open source projects
from GitHub. We chose open source projects aiming at future replications and
extensions by other developers. We decided to select the projects from the
GitHub since it is the largest open source community, which allowed us to
pick heterogeneous projects, from di�erent domains and sizes. To choose the
projects, we used the following criteria:

– Projects with di�erent popularity levels. We used the number of GitHub
stars as a metric to quantify its popularity.

– Projects with at least 90% of the code repository e�ectively written in
Java.

– Projects with at least 20 elements (classes) refactored during a given span
of time of six months. This was the window defined by us to evaluate the
commits.

These criteria allowed us to select 12 Java projects with a diversity of
structure, size, and popularity, which are active and important to the software
community. We focused on Java2 projects because Java is a very popular
programming language. Additionally, the tool that we used to collect the code

2Available at https://www.java.com/en/download/

https://www.java.com/en/download/
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Table 4.1: Java Projects’ Details
Domain Project LOC Number of Classes Commits Stars

Android
Facebook Fresco 50,779 860 744 14,679
OkHttp 49,379 642 2,645 27,421
PhilJay MPAndroidChart 23,060 268 1,737 23,036

Application
Achilles 83,123 653 1,188 207
Containing 4,022,744 136 818 1
Market-Monitor 3,763 44 125 0

Database
Apache Derby 1,760,766 3,741 8,135 140
Presto DB 350,976 4,146 8,056 7,740
Realm Java 50,521 1,018 5,916 19,938

Framework Apache Dubbo 104,267 1,690 1,836 19,934
Spring Framework 555,727 12,715 12,974 22,052

Web Application Apache Tomcat 668,720 2,275 18,068 2,406

smells, Organic, was implemented to collect smells from Java projects. These
projects are detailed in Table 4.1. The first column presents the domain of
the project. The second column presents the project name. The third and
fourth columns show the size of the project, respectively, in terms of lines of
code (LOC) and the number of classes. The fifth column presents the number
of commits on the project and finally, the sixth column shows the degree of
popularity of the project, based on its stars.

We can observe in this table the heterogeneity of the projects: we have
12 projects from five di�erent domains. Considering the size of the project, we
have projects that range, for instance, from thousands of LOC to projects with
hundreds of thousands of LOC. We also can consider the size of the projects
based on the number of classes, where we have from projects with less than 100
classes to projects with more than 10.000 classes. Finally, we can see projects
with zero stars to projects with more than 20.000 stars, which indicates the
di�erent levels of popularity of these projects. This heterogeneity will help us
to evaluate how the heuristics perform in di�erent scenarios.

For the second set of systems, we selected five systems from industry
partners: Health Watcher (HW) (Soares, Laureano and Borba 2002), Mobile
Media (MM) (Young 2015), Apache OODT (Mattmann et al 2006), P1, and
P2. P1 and P2 are proprietary and, due to intellectual-property constraints, we
omitted their names. We highlight that the systems used in this study are from
di�erent companies than the ones used on our qualitative study (Chapter 3).
We focused on these systems because: (i) their architecture had degraded, (ii)
they present a wide range of design problems, and (iii), di�erent from the
first set of projects, their original developers provided us with a reliable list of
design problems that were causes of major maintenance e�ort. Following we
describe these systems.

– Health Watcher (HW): This is a web framework system that allows
citizens to register complaints about the health issues in public institu-
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Table 4.2: Characteristics of the Target Systems
Domain Project Design LOC

Web Framework Health Watcher Layers ≥8,000
Software Product Line Mobile Media MVC ≥10,000
Desktop Application P1 Client-Server ≥122,000
Desktop Application P2 Client-Server ≥118,000
Middleware OODT Layers ≥129,000

tions (Soares, Laureano and Borba 2002).

– Mobile Media (MM): This is an academic software product line to
derive applications that manipulate photos, videos, and music on mobile
devices (Young 2015).

– P1 and P2: P1 and P2 manage activities related to production and
distribution of oil.

– Apache OODT: The goal of this system is to develop and promote the
management and storage of scientific data.

Details about these systems are presented in Table 4.2. The first column
presents the system domain. The second column presents the system name.
The third column presents the design followed in the system implementation.
The fourth column shows the size of the software system in terms of its lines
of code (LOC). In this table, we observe the heterogeneity of the systems used
in the study. This heterogeneity is represented from the di�erent domains that
each one belongs to the three di�erent designs applied to them. Similar to the
previous project, from GitHub, this set also contains systems both small and
large in size.

Ground Truth Creation (EV2). In the second activity, we created the ground
truth to the evaluation, which is the list of elements prioritized by developers.
As we have two sets of software projects, we had di�erent procedures to create
the ground truth for each set. We discuss these procedures in Section 4.1.3.

Running the Heuristics (EV3). In the third activity, we ran our heuristics
in all 17 software systems with the version used to create the ground truth
(Section 4.1.3). Figure 4.2 depicts the phases of running the heuristics. In the
first phase, we collected the smells in each project (Phase 1). To collect them,
we used the Organic tool, which uses detection strategies based on a set of
metrics and thresholds (Marinescu, 2004, Lanza and Marinescu 2006). Once
we had the elements and their respective smells, we ran our heuristics in the
second phase. In this phase, the heuristics receive as input the code smells.
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Phase 1: Collect Smells (Organic) 

Input: Project 
Output: Elements with code smells 

Phase 2: Run Heuristics 
Input: Elements with code smells 
Output: Prioritized Elements 

Organic Projects Elements with
Code Smells

Prioritized Elements

Heuristics

Figure 4.2: Running the Heuristics

Then, it produces the TOPN prioritized elements found by each heuristic
(Phase 2). The details about the heuristics were presented in Section 3.3.

Calculating the Precision (EV4). In the last activity, we compared the list
of elements prioritized by the heuristics with the list of elements in our ground
truth. We use the comparison to calculate the Precision at K. The notion of
precision at k is based on a definable integer K that is set by the developer to
match the top-N elements. Since we are most likely interested in prioritizing a
short list of smelly elements, we compute precision in the first TOPN elements
instead of all the elements. Hence, we define Precision based on the number of
elements marked as true positive (TP), and false positive (FP). A TP occurs
when the heuristics put in the TopN an element that is also part of the ground
truth list. A FP happens when the heuristics put in the TopN an element that
does not match any element in the ground truth list. The precision is calculated
using the following formula:

Precision = TP

TP + FP
(4-1)

Regarding the recall, it should measure the fraction of relevant elements
that have been prioritized over the total amount of relevant elements in the
system. However, in the prioritization context, the recall is a measure that
does not play as much important role as precision. As explained before,
the developer has to prioritize just a few elements due to time constraints,
especially in large systems that may contain several elements. Consequently,
to provide the whole set of relevant elements to developers analyze is unfeasible
in practice. Therefore, the exactness (precision) of the prioritization heuristics
is more important than its completeness (recall). After all, he will analyze only
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a reduced set of elements.

4.1.3
Ground Truth Creation

We had two di�erent sets of projects, which led us to two procedures to
create our ground truth of elements prioritized by developers. Each procedure
corresponds to how developers prioritized (elements with) design problems in
each set of projects. As a result, we can evaluate the heuristics in finding those
elements that developers had di�erent criteria to prioritize.

Refactoring Prioritization List. For the 12 GitHub projects, we created
a ground truth based on refactoring (Fowler 1999). Developers can im-
prove the system structure using refactoring to remove design problems
(Murphy Hill, Parnin and Black 2009). Therefore, we can identify the ele-
ments that developers prioritized looking at those elements they concentrated
e�ort to refactor. Figure 4.3 presents the steps that we took to create the list
of elements prioritized during refactoring. To identify them, our first step was
to select a version of each project that could have design problems (Phase 1).
For this selection, we analyzed the first 100 commits of each project, and we
identified the commit (Cn) that had the highest number of smells. We analyze
the first commits because some design problems are born with the systems
(Oizumi et al. 2016). Thus, we want to verify if our heuristics can prioritize
them. We selected the commit with the highest number of smells because
they are likely to have design problems (Macia et al. 2012b, Bertran 2011,
Oizumi et al. 2016, Yamashita and Moonen 2013).

After selecting the initial commit (Cn) of each project, we used the
RefactoringMiner tool (Tsantalis et al 2013) to identify all elements refactored
from the initial commit (Cn) until the commit six months later (Cn+m) (Phase
2). These are the elements that developers concentrate their e�ort to refactor,
and that compose the refactoring prioritization list. We are aware that not all
refactored elements contain design problems (Section 4.3); even so, we want to
investigate if our heuristics can support developers to prioritize elements that
they concentrate e�ort, for instance, by removing the design problems through
refactoring.

Design Problems Prioritization List. For the five industry partners systems,
we created a ground truth with the collaboration of the systems’ original
designers and developers. We performed two steps to incrementally develop
the ground truth. First, developers provided us with an initial list of design
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}

...
C1 C2 C100

RefactoringMiner

Cn Cn+1 Cn+m

6 Months

Phase 1: Select the Project Version

Phase 2: Collect Refactoring Prioritization List

Refactoring Prioritization List

Figure 4.3: Phases to Create the Refactoring Prioritization List

problems. They listed the problems and explained the relevance of each one.
They reported the maintenance e�ort caused by the presence of each design
problem. They also described which elements were a�ected by the design
problem. Second, we performed other steps to validate the initial list for
correctness and completeness. Additional identification of design problems
was performed using the source code and the system design. For systems
without design documentation, we relied on a suite of design recovery tools
(Garcia et al. 2013).

The procedure for deriving the list of design problems with developers
was the following:

1. We identified an initial list of design problems using the SCOOP tool
(Macia et al. 2012a), which detects code smells relevant to the identifi-
cation of design problems.

2. The developers had to confirm, refute or expand this list.

3. The developers provided a brief explanation about the relevance of the
design problem.

4. When we suspected there was still inaccuracies in the list, we asked them
for further feedback.

At the end of this procedure, we had the list of design problems validated
by the original designers and developers from the 5 software systems.
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4.2
Results and Discussion

We discuss here the results for the evaluations of our nine heuristics.
As presented in our first study (Chapter 3), we have two sets of heuristics.
The first set is composed of Smell Granularity, Smell Count and Diversity
heuristics. They are simple heuristics in the sense of using only a single criterion
to prioritize elements. Even though we expected that Smell Granularity would
achieve good results since the developers often rely on smells to identify the
design problems, Diversity was the heuristic with better results among the
simple ones. The second set of heuristics is composed of Count & Div, Div &
Count, Count & Gran, Div & Gran, Gran & Count and Gran & Div heuristics.
They are combined heuristics since they use a second criterion to make the
tiebreaker in the case of a tie. Since developers combine the criteria in practice
(Chapter 3), we expected these heuristics to achieve better results than the
simple heuristics. However, in multiple cases, they had the same precision
as the simple heuristics that served as tiebreakers. At the same time, it was
also expected that not necessarily all heuristics would have good e�ectiveness,
since some prioritization criteria used by developers may not be suitable for
the prioritization of relevant elements.

The following subsections present the results and discussions for the
evaluations. Section 4.2.1 presents the evaluation with the GitHub projects.
Section 4.2.2 presents the evaluation with the industry partners projects.

4.2.1
Evaluating the Heuristics with the GitHub Projects

We evaluated the heuristics with 12 GitHub projects. Since we did
not have access to the developers of these projects, we used the refactoring
operations to identify the elements that developers prioritized in these projects
over a period of time, i.e, our ground truth. In this sense, we can evaluate to
what extent our heuristics is able to find elements that developers would focus
their e�ort to remove design problems, which is the advantage of evaluating
the heuristics with these projects. After applying the heuristics to find the
Top3 elements, we compared the elements with our ground truth of refactoring
prioritized elements. Then, we calculated the precision, which is shown in
Tables 4.3 and 4.4.

Smell Count as the heuristic with the best precision. When
we consider only the simple heuristics, Smell Count had better precision,
50.55% on average. With this computation of the average of the projects, we
can estimate how our heuristics would perform in di�erent projects chosen
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Table 4.3: Precision of the heuristics in finding elements prioritized during
refactoring operations a)

Simple Heuristics
Project Smell Granularity Smell Count Diversity

Achilles 1/4 (25.00%) 3/3 (100.00%) 5/5 (100.00%)
Apache Derby 1/3 (33.33%) 2/3 (66.67%) 3/8 (37.50%)
Apache Dubbo 2/3 (66.67%) 2/3 (66.67%) 1/3 (33.33%)
Apache Tomcat 1/3 (33.33%) 0/3 (0.00%) 1/6 (16.67%)
Containing 0/6 (0.00%) 1/3 (33.33%) 2/8 (25.00%)
Facebook Fresco 2/3 (66.67%) 0/3 (0.00%) 1/5 (20.00%)
Market Monitor 0/3 (0.00%) 0/6 (0.00%) 0/5 (0.00%)
Media Magpie 1/9 (11.11%) 2/3 (66.67%) 1/4 (25.00%)
PhilJay MP Android Chart 3/3 (100.00%) 6/6 (100.00%) 5/5 (100.00%)
Presto DB 0/5 (0.00%) 2/3 (66.67%) 1/3 (33.33%)
Realm Java 1/13 (7.69%) 2/3 (66.67%) 1/7 (14.29%)
Spring Boot 0/4 (0.00%) 2/5 (40.00%) 1/6 (16.67%)
Average 28.64% 50.55% 32.79%

Table 4.4: Precision of the heuristics in finding elements prioritized during
refactoring operations b)

Combined Heuristics
Project Count & Div Div & Count Count & Gran Div & Gran Gran & Count Gran & Div

Achilles 3/3 (100.00%) 3/3 (100.00%) 3/3 (100.00%) 5/5 (100.00%) 1/4 (25.00%) 1/4 (25.00%)
Apache Derby 2/3 (66.67%) 2/3 (66.67%) 2/3 (66.67%) 2/4 (50.00%) 1/3 (33.33%) 1/3 (33.33%)
Apache Dubbo 2/3 (66.67%) 1/3 (33.33%) 2/3 (66.67%) 1/3 (33.33%) 2/3 (66.67%) 2/3 (66.67%)
Apache Tomcat 0/3 (0.00%) 0/3 (0.00%) 0/3 (0.00%) 0/4 (0.00%) 1/3 (33.33%) 1/3 (33.33%)
Containing 1/3 (33.33%) 2/8 (25.00%) 1/3 (33.33%) 0/5 (0.00%) 0/6 (0.00%) 0/6 (0.00%)
Facebook Fresco 0/3 (0.00%) 0/3 (0.00%) 0/3 (0.00%) 1/5 (20.00%) 2/3 (66.67%) 1/3 (33.33%)
Market Monitor 0/5 (0.00%) 0/5 (0.00%) 0/6 (0.00%) 0/3 (0.00%) 0/3 (0.00%) 0/3 (0.00%)
Media Magpie 2/3 (66.67%) 1/3 (33.33%) 2/3 (66.67%) 1/4 (25.00%) 1/9 (11.11%) 1/7 (14.29%)
PhilJay MP Android Chart 3/3 (100.00%) 3/3 (100.00%) 6/6 (100.00%) 5/5 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
Presto DB 2/3 (66.67%) 1/3 (33.33%) 2/3 (66.67%) 1/3 (33.33%) 0/5 (0.00%) 0/5 (0.00%)
Realm Java 2/3 (66.67%) 1/5 (20.00%) 2/3 (66.67%) 1/7 (14.29%) 1/13 (7.69%) 1/13 (7.69%)
Spring Boot 1/4 (25.00%) 1/5 (20.00%) 2/5 (40.00%) 0/3 (0.00%) 0/4 (0.00%) 0/4 (0.00%)
Average 49.30% 40.35% 50.55% 31.30% 28.64% 26.13%

randomly. With the exception of three projects, it was able to correctly
prioritize at least one element in each analyzed system. Since the smells are
used as an indicator of refactoring, it was expected that the element with the
most smells would be the one that the developer would do the refactoring.
However, we were not expecting that the Smell Count would outperform the
other heuristics. In fact, we were expecting that the Smell Granularity would
be the heuristic with the best precision among the simple ones, since it is based
on how developers frequently used the smells, considering its type.

The nature of some design problems is the second factor that makes this
result about Smell Count surprising. When some design problems manifest
in the source code, smells from di�erent types will be related to them. Thus,
only looking at the number of smell instances may not be a good approach.
For instance, let us consider an A class that uses a third-party library Z. This
class is likely to make several calls in chains to access the functionality of
Z (Z.getX().getY().getZ()); thus, this class may contain several instances
of Message Chain smell. A heuristic such as Smell Count would mistakenly
prioritize this class.

On the other hand, let us consider our example from Section 1.1 -
Figure 1.1, where we have the system S1, that manages loans and sales of
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printer devices. The Concern Overload manifested in the DeviceRepository
class as smells from di�erent types: Complex Class, God Class, Long Method,
and others. In this scenario, a heuristic such as Diversity should supposedly
outperform the Smell Count, or at least find the same precision. In practice,
this result suggests that Smell Count heuristic may provide a good start point
to developers who do not know to where start the analysis of the elements.

The negative e�ect of the smell type. Regarding the other two
simple heuristics, Diversity had better precision than the Smell Granularity.
Notice that both heuristics consider the type of each smell to prioritize elements
instead of blindly considering only the number of smell instances such as the
Smell Count heuristic does. This result suggests that the smell type did not
prove to be appropriated to derive heuristics for these projects. At first sight,
this finding seems to be unlikely since contradicts to the first study. As we
found in the first study, the smell type was the most used criterion. Thus, one
may expect that the smell types would be appropriate to derive the heuristics
since developers used them so often.

However, the more the heuristic is based on the smell type, the worse is
its precision. For instance, the Smell Granularity is the one that most relies
on the smell types, which had the worst precision. Diversity, in its turn, is
a midterm between Smell Granularity and Smell Count. In other words, it
simultaneously relies on the smell type and on smell instances – in this case,
relying on the number of di�erent types of smells. Hence, it has better precision
than Smell Granularity, but lower than Smell Count. When we consider the
combined heuristics, we can also notice that the smell type was not appropriate
to derive heuristics for the projects. Comparing the Diversity and Div & Gran,
there was a slight decrease in the precision.

Combining criteria. As mentioned, we expected that the combined
heuristics would achieve good results since developers combine criteria in
practice (Section 4.2). However, the results show the opposite. With the
exception of Count & Gran, the other combined heuristics had lower precision
when compared to the Smell Count. In fact, our main expectation was that
Count & Gran would have the best precision since (i) it is based on how
developers used smells, and (ii) it is also based on the second most used
criterion (number of smells). However, it had the same precision as Smell
Count. This result suggests that the smell type was not appropriate for
breaking a tie between elements in these projects, i.e, the smell type had no
e�ect on how the heuristics prioritized elements.

Precision equal to zero. When we look at the data in Tables 4.3
and 4.4, we can notice cases where the heuristics could not prioritize any
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element correctly, leading to a precision equal to zero (cells in red color). In this
sense, we analyzed the Market-Monitor project to understand why no heuristic
was able to prioritize elements correctly. We found that the elements in our
ground truth were not related to design problems. Consequently, the heuristics
were correct in not prioritizing these elements, leading to the precision of 0%.
This result made us wonder if our ground truth was inappropriate for the
evaluation. The ground truth list may contain elements that are not related
to design problems, which justifies the low precision in other projects as well.
In this context, we decided to investigate our ground truth.

To create the ground truth for the GitHub projects, we searched for
elements that developers concentrated e�ort in refactoring during a timespan
of six months (Section 4.1.3). These are the elements that may contain design
problems, which could have motivated the refactoring. We suspected that
these elements could have been refactored due to other reasons unrelated
to design problems. Therefore, we conducted an analysis on seven projects
that had the best or worst precision with our heuristics: Achilles, PhilJay
MPAndroidChart, Presto DB, Realm Java, Apache Tomcat, Facebook Fresco,
and Market-Monitor. We manually analyzed them to see if the elements in the
ground truth were related to design problems.

Smell Count as the most appropriate heuristic to find elements
that should be refactored. After our manual analysis, we found that most
elements on these selected projects were not related to design problems.
Hence, our ground truth had elements that were prioritized due to other
reasons not related to a design problem. This happens because we used the
refactoring to identify elements with design problems. However, a refactoring
operation can have other goals not related to the removal of design problems
(Murphy Hill, Parnin and Black 2009). For instance, the developers may apply
refactoring operations to solve a bug or to add a feature. In these cases, the
prioritized elements are not the same elements that contain design problems.
This result indicates that the Smell Count heuristic was able to find the
elements that developers refactored. Consequently, it is the most appropriate
one to find elements which developers should focus e�ort during refactoring.

The result of the ground truth also suggests that the ground truth was
inappropriate to evaluate if the heuristics prioritize relevant elements. It was
inappropriate because it contained elements that did not have design problems.
Consequently, we can not evaluate if our set of heuristics find relevant elements.
Therefore, we conducted a second evaluation with a new set of projects, in
which we had a di�erent procedure to create the ground truth (Section 4.1.3).
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Table 4.5: Precision of the heuristics in finding elements prioritized using design
problems a)

Simple Heuristics
Project Granularity Smell Count Diversity

Apache OODT 3/3 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
Health Watcher 0/3 (0.00%) 0/3 (0.00%) 0/3 (0.00%)
Mobile Media 3/3 (100.00%) 2/3 (66.67%) 3/3 (100.00%)
P1 3/3 (100.00%) 1/3 (33.33%) 3/3 (100.00%)
P2 3/3 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
Average 80.00% 60.00% 80.00%

Table 4.6: Precision of the heuristics in finding elements prioritized using design
problems b)

Combined Heuristics
Project Count & Div Div & Count Count & Gran Div & Gran Gran & Count Gran & Div

Apache OODT 5/6 (83.33%) 3/6 (50.00%) 3/6 (50.00%) 3/3 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
Health Watcher 0/7 (0.00%) 0/6 (0.00%) 0/7 (0.00%) 0/3 (0.00%) 0/3 (0.00%) 0/3 (0.00%)
Mobile Media 3/8 (37.50%) 3/6 (50.00%) 3/8 (37.50%) 3/3 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
P1 1/6 (16.67%) 3/7 (42.86%) 1/6 (16.67%) 3/3 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
P2 3/6 (50.00%) 3/6 (50.00%) 3/6 (50.00%) 3/3 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
Average 36.36% 38.71% 30.30% 80.00% 80.00% 80.00%

4.2.2
Evaluating Design Problems with Prioritized Elements

In the previous section, we found that the Smell Count heuristic was
the most appropriate to find elements that should be refactored. However, we
also found that (i) the smell type was not appropriate to derive heuristics in
those projects, and (ii) the combined heuristics did not have the better results,
which was contrary to our expectations. However, how we created our ground
truth for the first evaluation jeopardizes these two last findings. Hence, we
had to conduct another evaluation. For this evaluation, we relied on the list
of prioritized elements that the original developers of five systems from our
industry partners provided to us. Tables 4.5 and 4.6 presents the precision of
the heuristics in finding the TOP3 elements for these systems.

The positive e�ect of the smell type. Analyzing the precision in
Tables 4.5 and 4.6, we can notice the inverse result to the one obtained with
the GitHub projects. The heuristics with the best precision values were exactly
those that somehow use the smell type. In our first study, we noticed that all
developers rely on the smell types frequently (Chapter 3). Therefore, we were
expecting that the Smell Granularity would achieve good results. This second
evaluation confirms our expectation, which can justify why developers rely on
the smell type so often. In fact, to developers identify a design problem, they
have to reason about di�erent types of smells (Section 1.1). In our first study,
we noticed that when the developers are concerned about a design problem,
they tend to consider also the type of each smell. Consequently, heuristics that
consider intrinsic information about the symptoms – in our case, heuristics
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Table 4.7: Top N Prioritized Elements (Simple Heuristics)
Simple Heuristics

Top Granularity Smell Count Diversity
5 68.00% 53.57% 65.38%
7 66.67% 56.76% 70.27%
10 67.31% 58.82% 71.70%
15 77.27% 58.75% 76.29%
20 76.58% 63.85% 76.79%

Table 4.8: Top N Prioritized Elements (Combined Heuristics)
Combined Heuristics

Top Count & Div Div & Count Count & Gran Div & Gran Gran & Count Gran & Div
5 41.18% 32.08% 35.29% 68.00% 68.00% 68.00%
7 31.08% 30.95% 32.43% 66.67% 66.67% 66.67%
10 26.92% 33.93% 25.38% 67.31% 67.31% 67.31%
15 26.04% 46.45% 27.22% 77.27% 77.27% 77.27%
20 38.25% 42.86% 37.79% 76.58% 76.58% 76.58%

that considered the type of each smell – are likely to reach a good precision
and it is aligned to how developers identify design problems in practice.

Unfortunately, the data in Tables 4.5 and 4.6 can not provide us with
much more insights: all heuristics have similar results. For instance, none of
the heuristics were able to correctly prioritize elements in the Health Watcher
system. Additionally, we do not know which heuristic had the best precision
only looking at the TOP3 elements. We also can not say how the combination
of criteria influenced the heuristics. Therefore, we also ran the heuristics with
other TOPN elements to gather more data about each heuristic. Tables 4.7
and 4.8 shows the average precision for all the projects in with multiple TOPN

prioritized elements.
Using a second criterion as a tiebreaker. Another expectation

that we had was about the combination of criteria. Since developers combine
criteria in practice, we were expecting that the combined heuristics would
achieve good results. Indeed, analyzing the results from Table 4.8, they
achieve high precision. However, we can notice the same results between the
simple heuristics and the combined heuristics. Smell Granularity had the
same precision that Div & Gran and the other two heuristics where the type
was considered first, Gran & Count and Gran & Div; Smell Count had a
better precision that Count & Div and Count & Gran; and Diversity had
a better precision than Div & Count. This result indicates that the way we
have combined the criteria is not the best approach. In our cases, we used
a second criterion to break a tie between elements. However, this approach
is not showing e�ect. Consequently, this similar result among the heuristics
reinforces that we need to find better ways to combine criteria.

Diversity as the most appropriate heuristic for prioritizing
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elements with design problems. Since simple and combined heuristics have
the same precision, or when combined, they had a lower precision, let us focus
on the simple ones to discuss which heuristics are most appropriate to prioritize
elements. According to Table 4.7, Smell Granularity, and Diversity were the
two heuristics with the best precision. However, the Diversity heuristic seems
to be the most appropriate heuristic for the prioritization since it overcame the
Smell Granularity in three scenarios: TOP7, TOP10, and TOP20. Regarding
the Health Watcher system. Both heuristics correctly prioritized elements in
the Health Watcher system after TOP7, thus no longer having precision equal
to 0. These two heuristics had the same precision values in the Health Watcher
system. Additionally, they were the only ones that had precision values di�erent
from zero after TOP7.

Improving the heuristics. An approach to improve the heuristics is
finding another way to combine the criteria. This is necessary as the use of
a second criterion to generate the combined heuristics did not improve the
results of the simple versions of the heuristics. For instance, when the diversity
criterion is used as the tiebreaker of the number of smells criterion, the resulting
heuristic (Count & Div) did not improve the results of its simple version (Smell
Count), as we can see in Tables 4.7 and 4.8. This result suggests that the way
we have used a second criterion as a tiebreaker is not the better way to combine
criteria.

This finding on how we combined the criteria can also be noticed by
the number of elements that each heuristic returned (Table 4.6). We set
the heuristics to return only three most prioritized elements. However, they
returned more than 3 elements in some cases. This happens because the
heuristics return the three first elements that fit the criterion, however, if a
fourth element ties with the third, the heuristics also return it. The heuristic
returns more consecutive elements until there is no more tie. This behavior also
happens with the combined heuristics, even though they have a mechanism to
solve ties. However, their mechanism did not su�ce to break the tie, which
leads to the same precision results in Tables 4.6 and 4.8. For instance, the
precision of the Smell Granularity is the same as the combinations with smell
count (Gran & Count) and with diversity (Gran & Div).

Another approach to improve the heuristics is instead of considering the
smell levels, a heuristic should consider how the smells are related to each
other. In this case, a heuristic that uses the relation criterion may improve
the results (Section 3.3.2). The use of these specific heuristics can reach good
results since it will consider more intrinsic information of the system. This
way, these heuristics will be more related to the system that is being applied.
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Another option would be to consider the role of the elements in the system.
Nevertheless, to use these criteria, we should consider subjective information
about the systems (Section 3.3.2).

4.3
Threats to Validity

This section presents the threats to the validity of this study. For each
threat, we present the actions taken to mitigate its impact on the final result.

First, we analyzed just the 100 first commits of the project to select the
elements and apply our heuristics. One can argue that this is a low number of
commits. However, this decision was based on a study that shows that some
design problems born with the system (Oizumi et al. 2016), motivating us to
consider only the first 100 commits. Also, the use of six months as a time
span for the commits analysis can be considered a short period of time. We
used this value as an arbitrary value. This way is possible that occurred some
refactoring in the same element after those 6 months, which could change the
order of the prioritized elements. In this case, we are not able to get these
elements. However, this period of time helps us to identify if when a developer
identifies a design problem in an element, he promptly does a refactoring in
this element.

Even though there are other categories of design problem symptoms, our
heuristics have been defined in function of the code smells. We highlight that
these heuristics can be applied to any category of symptom. Nevertheless, we
have restricted them to smell since our focus is to find design-relevant smells.
As explained before, code smells have been used in several studies, and they
are one of the most investigated category of symptoms (Oizumi et al. 2016,
Arcoverde et al. 2013). Another reason that we have focused on smells is
because the companies’ managers mentioned that some of the developers
involved in the study not only were familiar with smells but also had the
culture of using them. Furthermore, our goal was to explain the prioritization
of design problems, and not delve too deeply into the symptoms.

As we found later, our ground truth for the first set of projects (GitHub
projects) had elements unrelated to design problems. To mitigate this threat,
we used the second set of projects (Industry partners projects), using a new
procedure to create the ground truth, where now we consider the elements
a�ected by design problems identified by the SCOOP tool (Macia et al. 2012a),
confirmed by the developer and then validated by our team.
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4.4
Summary

We analyzed the elements prioritized by the heuristics to understand
how the smells were related to the design problems. We noticed that the
type of each smell was indeed important to prioritize elements with design
problems. This was one of the reasons why Smell Granularity and Diversity
had better precision. Indeed, the smell type was also the reason why these
both heuristics were able to correctly prioritize elements that were not related
to design problems in our first set of projects. As that grounded truth had
elements unrelated to design problems, these heuristics did not prioritize them.
Another reason why Smell Granularity and Diversity had better precision is
due to the total number of smells. We found some elements that had several
smells that were unrelated to design problems. Since these elements had several
smells, the Smell Count heuristic prioritized them. On the other hand, both
Smell Granularity and Diversity did not prioritize these elements.

In summary, the first evaluation shows us that the Smell Count heuristic
can be used by developers who are short in time and do not have deep
knowledge about the system’ design. Conversely, the result found in the second
evaluation indicates that a heuristic to prioritize elements with design problems
should consider intrinsic information about the symptoms. In our case, our
heuristics considered the type of each smell. As a result, the two heuristics
based on the smell type had the best precision values. The intrinsic information
is important to the developer confirm if the smells are relevant or not to the
identification of a design problem. In other words, it helps the developers to
confirm if that smell is a design-relevant one, consequently prioritizing the
relevant element.

Thus, our evaluations provided us with promising results, which also
motivate us to study the specific heuristics (Section 3.3.2) in the future.
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5
Conclusions

Design problems are the result of bad design decisions that can af-
fect some quality attributes of the system, such as maintainability and per-
formance (Garcia et al. 2009b). When neglected, a design problem can lead
the software to high maintenance costs in the future and even its dis-
continuity (MacCormack, Rusnak and Baldwin 2006, Godfrey and Lee 2000,
Schach et al. 2002, Gurp and Bosch 2002). Thus, they should be identified and
removed as soon as possible. However, identifying a design problem can be a
challenging task. For instance, a design problem can be scattered through many
elements (e.g. classes and packages) of the system. Given the large number of
elements in a system, developers have to prioritize the ones that are likely to
have design problems. In addition, as design documentation is often unavail-
able or outdated (Trifu and Reupke 2007, Kaminski 2007), developers have
to rely on implementation-level indicators of design problems on the source
code. These indicators are the so-called symptoms (Sousa et al. 2017), which
are partial signs of the presence of a design problem. In this sense, develop-
ers can rely on code smells, which is one of the most investigated symptoms
in the literature (Yamashita and Moonen 2013, Macia 2013, Moha et al. 2010,
Oizumi et al. 2016, Oizumi et al 2018).

Multiple studies have focused on the relation between design problems
and code smells. Some of them have even presented the code smells as indi-
cators of design problems (Yamashita and Moonen 2012, Macia et al. 2012a,
Oizumi et al. 2016). However, they do not focus on the task prior to the iden-
tification of design problems, which is the prioritization of relevant smelly
elements. A relevant smelly element (or relevant element) is an element
that contains at least one design-relevant smell. These design-relevant smells
are the ones used on the identification of design problems. Some studies
have covered the prioritization of relevant elements (Arcoverde et al. 2013,
Vidal et al. 2016, Guimaraes et al 2018), by proposing some heuristics for this
prioritization. However, they do not investigate in practice how the developers
prioritized elements. In this context, this dissertation addressed the gaps and
limitations of the literature by proposing heuristics for the prioritization of
relevant elements; these heuristics were based on criteria used by developers.
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To propose and evaluate the prioritization heuristics, we performed two
studies. In the first one, we observed how developers prioritized relevant
elements in practice. First, we asked them to prioritize relevant elements
on their source code. We gave them a summarized list of smells a�ecting
the elements, thus they could prioritize the design-relevant smells and, then,
further confirm whether the element was relevant or not to identify a design
problem. After the experiment, we analyzed how they prioritize the relevant
elements. Based on this analysis, we extracted criteria that they commonly
used during the prioritization task. The criteria are smell type, number of
smells, type diversity, element role and relation.

Together with the actions taken by the developers during the prioritiza-
tion task, we used those criteria to propose a suite of prioritization heuristics.
These heuristics used the criteria that we identified in the experiment. For
instance, we proposed a suite of nine heuristics that rely on three criteria that
are independent of the system (smell type, number of smells and type diver-
sity). Using these three criteria and combining them we derived this extended
suite of heuristics. However, we did not know if the criteria applied by the
developers on the prioritization were appropriate to derive e�ective heuristics.
Thus, we designed and executed a study to evaluate the heuristics.

In the second study, we evaluated the heuristics in terms of their
e�ectiveness in finding a small sub-set of relevant smelly elements in a top
priority list of N elements (TOPN). To evaluate these heuristics, we applied
them in two sets of projects. The first set of projects was composed of software
projects from GitHub, which had a certain degree of structural degradation.
To create the ground truth for those projects, we identified the elements that
had at least one refactoring, indicating that the developers at some point
had to dedicate e�ort in refactoring this element. The second set of projects
were composed of projects of our industry partners. In this case, the original
developers provided us with the design problems a�ecting the elements in the
system. We used these a�ected elements as the relevant elements. For each of
this set of projects, we compared the list of relevant elements prioritized by
our heuristics against the set of relevant elements defined in the ground truth.

The first evaluation shows that the Smell Count heuristic can be used by
developers who need to prioritize elements that need to be refactored. Based
on the second evaluation, we found that the heuristics for the prioritization of
relevant elements with design problems should consider intrinsic information of
the smell a�ecting the elements. For instance, both heuristics with best results
used the type of smells to prioritize the elements. This intrinsic information is
important to the developers so they can confirm if the smell is a design-relevant
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smell, i.e., if the smell can help the developer on the identification of a design
problem. Confirming that there is a design-relevant smell in the element, the
developer then ends up confirming the prioritization of this relevant element.

5.1
Contributions

In this dissertation, we discussed the need of the developer on receiving
support during the prioritization of relevant smelly elements. This prioritiza-
tion is a challenging and time-consuming task that precedes the identification
of design problems. In this context, we identified the criteria that they com-
monly use during the prioritization task. In addition, we proposed a suite of
nine heuristics to support the developer on this prioritization. In a nutshell,
the contributions of this dissertation are described as follows.

Criteria used by the developers during the prioritization of design prob-
lems (Chapter 3). In order to understand how the developers prioritized
design problems, we observed how they do this task in practice. During this
observation, we found that they tended to use criteria that can be divided into
two categories. First, we have the general criteria, which can be defined as the
criteria that can be easily replicated to any system. For instance, the number
of code smells in an element can be collected independently of the system. The
second scope comprises the specific heuristics, which use more specific infor-
mation of the system. For instance, for the criterion that considers the role
of an element in the system, first, we need to know how what are the roles
(for instance a Service) and what are their responsibilities in the system. The
responsibilities of a same role can vary from system to system.

Heuristics for the prioritization of relevant elements (Chapter 4). From
the observation of the practice, we could propose the prioritization heuristics
aligned with how the developers do the prioritization task. Among the heuris-
tics proposed, we reached good results on the precision with heuristics such as
Diversity and Smell Granularity. Also, we proposed a first sketch of how the
specific criteria can be used for the creation of new heuristics.

Empirical Findings. We conducted two empirical studies to both propose
and evaluate the heuristics. The main findings are described as follows.

1. Smell Count as the most appropriate heuristic to find elements
that should be refactored. In the evaluation with the first set of
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projects, Smell Count had the best precision among the others, with
50.55% on average. With the exception of three systems, it correctly
prioritized at least one relevant element on each system. Upon manual
analysis of the prioritized elements on the evaluated projects, we found
that most of them did not have a design problem. Hence, these results
indicate that the Smell Count heuristic was able to find elements that
the developers refactored. Thus, among our evaluated heuristics, Smell
Count is the most appropriate to identify elements that developers should
focus on refactoring. These results are satisfactory since the goal of
the heuristics is to reduce the search space, aiming to find the relevant
elements. In fact, these results are even more satisfactory when taking
into account that only a small percentage of smelly elements are related
to design problems, as mentioned in Section 1.1. For example, in the
case of the Apache OODT (Section 1.1), less than 20% of the smelly
elements are related to design problems, i.e., the heuristic was able to
find half of the relevant elements. Additionally, We highlight that the
results for this heuristic (and for the others) are exciting considering that
this dissertation covered our first attempt to propose heuristics, and, in
the future, we want to investigate other heuristics such the specific ones
(Section 5.3).

2. The use of intrinsic information of a smell to prioritize relevant
elements. In the second set of systems, we created a ground truth where
the developers of the systems provided us with the design problems
and elements a�ected. With this new ground truth, Diversity and Smell
Granularity had the best results. Both of these heuristics used intrinsic
information of the smell: its type. This indicates that to prioritize relevant
elements, this intrinsic information should be considered. If we consider
the average precision of these heuristics, we have better precision (80%)
than the literature approaches that use smells on the prioritization. In
addition, this average is applied in more projects than the approaches
of the literature. In addition, developers tend to use this information
to confirm if a smell is a design-relevant smell and then prioritize the
relevant element. In order to identify a design problem, developers tend
to evaluate di�erent types of smells (Section 1.1), as we also noticed in
our first study (Chapter 3). Thus, the use of this intrinsic information is
aligned with how developers identify design problems in practice.
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Table 5.1: Papers produced during the MSc
Type Paper

Willian Oizumi, Leonardo Sousa, Alessandro Garcia, Roberto Oliveira, Anderson Oliveira,
OI Agbachi, Carlos Lucena. Revealing design problems in stinky code: a mixed-method
study. In Proceedings of the 11th Brazilian Symposium on Software Components, Architectures,
and Reuse (SBCARS ’17)*
Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessandro Garcia,
Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino Fonseca, Roberto Oliveira,
Carlos Lucena, Rodrigo Paes. Identifying design problems in the source code: a grounded theory.
Proceedings of the 40th International Conference on Software Engineering (ICSE ’18)*
Willian Oizumi, Leonardo Sousa, Anderson Oliveira, Alessandro Garcia, Anne Benedicte
Agbachi, Roberto Oliveira, Carlos Lucena. On the identification of design problems in stinky
code: experiences and tool support. In Journal of the Brazilian Computer Society (JBCS ’18)
André Eposhi, Willian Oizumi, Alessandro Garcia, Leonardo Sousa, Roberto Oliveira, Anderson Oliveira.
Removal of design problems through refactorings: are we looking at the right symptoms?.
In International Conference on Program Comprehension 2019 - Negative Results Track (ICPC’ 19)

MSc Research

Anderson Oliveira, Leonardo Sousa, Alessandro Garcia, Willian Oizumi. On the Prioritization of
Design-Relevant Smells: A Mixed-Method, Multi-Project Study. In International Symposium
on Empirical Software Engineering and Measurement (ESEM ’19 - To Submit)
Leonardo Sousa, Rafael de Mello, Diego Cedrim, Alessandro Garcia, Paolo Missier, Anderson Uchôa,
Anderson Oliveira, Alexander Romanovsky. VazaDengue: An information system for preventing and
combating mosquito-borne diseases with social networks. In Information Systems (IS ’18)

Other Contributions Eduardo Fernandes, Anderson Uchôa, Leonardo Sousa, Anderson Oliveira, Rafael de Mello,
Luiz Paulo Barroca, Diogo Carvalho, Alessandro Garcia, Baldoino Fonseca, Leopoldo Teixeira.
VazaZika: A Software Platform for Surveillance and Control of Mosquito-Borne Diseases.
In 16th International Conference on Information Technology: New Generations (ITNG ’19)

*Distinguished paper award

5.2
Research Publications

During the MSc, some papers were produced in the context of this
dissertation. In addition, some other papers were produced in partnership with
colleagues. Table 5.1 presents these papers. The first five papers are associated
with this dissertation. The fifth paper is not yet published. The remaining
papers are the ones produced during the MSc in contexts di�erent than this
dissertation.

5.3
Future Work

The prioritization heuristics presented in this dissertation can be seen as
a starting point for techniques to support the developer on the prioritization
of relevant elements. We also found some specific criteria that can be explored
in new heuristics. We summarize below some potential ideas for future work,
regarding the prioritization of relevant elements.

Exploring the specific heuristics. As discussed, we identified two specific
heuristics: element role and relation. We aim to explore these heuristics, which
we expect will have good results since they consider intrinsic information of
the systems. We expect these good results since the heuristics that considered
intrinsic information (diversity and smell granularity) had the best results.

Replication of the study with refactorings. We aim to replicate the study
with the GitHub projects, but now with a new ground truth. In this new
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approach, we will focus on retrieve refactorings related to design problems.
Thus, we will focus on refactorings on an architectural level, such as the ones
applied to interfaces or the moving of methods among packages.

Application of the prioritization heuristics with other symptoms. In this
dissertation, we focused only on the use of code smells. However, there are
other types of symptoms that the developers tend to use to identify design
problems (Sousa et al. 2017). We aim to explore these symptoms and verify
if they reach better results than just considering the smells. Also, we aim to
combine more than one type of symptom, which we expect that will lead to
heuristics with better precision results (Section 4.2).

Extension of the evaluation to include new projects. We aim to search for
projects with higher structural degradation than those used in our empirical
studies presented in this dissertation. We will be able to identify more relevant
elements in such projects, and further identify which information should be
taken into account for the prioritization heuristics. Thus, we may be able to
improve the e�ectiveness of our prioritization heuristics.

Tool support for applying the prioritization heuristics. Once we proposed
the heuristics, we aim to provide the developers with a tool that will present
them the prioritized elements on the system. A first idea is to implement this
tool in a way that allows the developer to analyze the relevant element in terms
of the smells a�ecting the element, the scope of the a�ected element and the
reason for the smell be a�ecting the element. In addition, we aim to implement
suitable visualization that can somehow complement our heuristics. Thus, the
developer will be able to better prioritize the design-relevant smells.
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